File size: 10,867 Bytes
d8cf478
 
 
 
 
 
18ab870
 
 
d8cf478
 
efabdf9
d8cf478
 
efabdf9
 
d8cf478
 
efabdf9
 
18ab870
0e538d2
18ab870
 
 
 
 
d8cf478
 
 
 
 
 
efabdf9
 
d8cf478
 
efabdf9
18ab870
 
 
 
efabdf9
 
 
 
d8cf478
efabdf9
 
 
 
d8cf478
efabdf9
d8cf478
efabdf9
d8cf478
 
efabdf9
 
d8cf478
18ab870
efabdf9
d8cf478
 
efabdf9
 
d8cf478
efabdf9
 
 
d8cf478
efabdf9
 
 
 
 
d8cf478
efabdf9
d8cf478
efabdf9
d8cf478
 
efabdf9
d8cf478
efabdf9
d8cf478
 
 
 
efabdf9
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41146f
 
 
efabdf9
18ab870
d41146f
 
efabdf9
 
18ab870
d41146f
efabdf9
18ab870
efabdf9
 
d41146f
efabdf9
 
18ab870
d41146f
efabdf9
 
 
 
 
 
18ab870
d41146f
efabdf9
 
 
 
d41146f
d8cf478
 
 
3ed8c7a
 
 
 
 
 
 
 
 
6154c13
3ed8c7a
 
 
 
 
6154c13
 
d8cf478
efabdf9
d8cf478
efabdf9
 
d8cf478
 
 
 
 
 
 
 
 
 
efabdf9
 
 
 
 
 
 
 
 
 
 
 
 
d8cf478
 
 
 
efabdf9
18ab870
 
 
d8cf478
efabdf9
 
d8cf478
18ab870
 
efabdf9
18ab870
efabdf9
d8cf478
efabdf9
 
 
18ab870
 
 
efabdf9
 
18ab870
 
 
efabdf9
 
18ab870
 
 
efabdf9
d8cf478
6154c13
 
 
7839697
6154c13
 
3ed8c7a
 
 
 
 
 
 
7839697
 
 
 
 
3ed8c7a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import pandas as pd
from tqdm import tqdm

DEFAULT_MECH_FEE = 0.01  # xDAI


def compute_metrics(
    trader_address: str, trader_data: pd.DataFrame, live_metrics: bool = False
) -> dict:

    if len(trader_data) == 0:
        # print("No data to compute metrics")
        return {}

    agg_metrics = {}
    agg_metrics["trader_address"] = trader_address
    total_bet_amounts = trader_data.collateral_amount.sum()
    total_num_mech_calls = trader_data.num_mech_calls.sum()
    agg_metrics["bet_amount"] = total_bet_amounts
    agg_metrics["nr_mech_calls"] = total_num_mech_calls
    agg_metrics["staking"] = trader_data.iloc[0].staking
    agg_metrics["nr_trades"] = len(trader_data)
    if live_metrics:
        return agg_metrics
    total_net_earnings = trader_data.net_earnings.sum()
    agg_metrics["net_earnings"] = total_net_earnings
    agg_metrics["earnings"] = trader_data.earnings.sum()
    total_fee_amounts = trader_data.mech_fee_amount.sum()
    total_costs = (
        total_bet_amounts
        + total_fee_amounts
        + (total_num_mech_calls * DEFAULT_MECH_FEE)
    )
    agg_metrics["roi"] = total_net_earnings / total_costs
    return agg_metrics


def compute_trader_metrics_by_market_creator(
    trader_address: str,
    traders_data: pd.DataFrame,
    market_creator: str = "all",
    live_metrics: bool = False,
) -> dict:
    """This function computes for a specific time window (week or day) the different metrics:
    roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
    The global roi of the trader agent by computing the individual net profit and the individual costs values
    achieved per market and dividing both.
    It is possible to filter by market creator: quickstart, pearl, all"""
    assert "market_creator" in traders_data.columns
    filtered_traders_data = traders_data.loc[
        traders_data["trader_address"] == trader_address
    ]
    if market_creator != "all":  # compute only for the specific market creator
        filtered_traders_data = filtered_traders_data.loc[
            filtered_traders_data["market_creator"] == market_creator
        ]
        if len(filtered_traders_data) == 0:
            # tqdm.write(f"No data. Skipping market creator {market_creator}")
            return {}  # No Data

    metrics = compute_metrics(trader_address, filtered_traders_data, live_metrics)
    return metrics


def compute_trader_metrics_by_trader_family(
    trader_address: str, traders_data: pd.DataFrame, trader_family: str = "all"
) -> dict:
    """This function computes for a specific time window (week or day) the different metrics:
    roi, net_earnings, earnings, bet_amount, nr_mech_calls and nr_trades.
    The global roi of the trader agent by computing the individual net profit and the individual costs values
    achieved per market and dividing both.
    It is possible to filter by trader family: quickstart_agent, pearl_agent, non_agent, all
    """
    assert "trader_family" in traders_data.columns
    filtered_traders_data = traders_data.loc[
        traders_data["trader_address"] == trader_address
    ]
    if trader_family != "all":  # compute only for the specific trader family
        filtered_traders_data = filtered_traders_data.loc[
            filtered_traders_data["trader_family"] == trader_family
        ]
        if len(filtered_traders_data) == 0:
            # tqdm.write(f"No data. Skipping trader family {trader_family}")
            return {}  # No Data

    metrics = compute_metrics(trader_address, filtered_traders_data)
    return metrics


def merge_trader_weekly_metrics(
    trader: str, weekly_data: pd.DataFrame, week: str
) -> pd.DataFrame:
    trader_metrics = []
    # computation as specification 1 for all types of markets
    weekly_metrics_all = compute_trader_metrics_by_market_creator(
        trader, weekly_data, market_creator="all"
    )
    weekly_metrics_all["month_year_week"] = week
    weekly_metrics_all["market_creator"] = "all"
    trader_metrics.append(weekly_metrics_all)

    # computation as specification 1 for quickstart markets
    weekly_metrics_qs = compute_trader_metrics_by_market_creator(
        trader, weekly_data, market_creator="quickstart"
    )
    if len(weekly_metrics_qs) > 0:
        weekly_metrics_qs["month_year_week"] = week
        weekly_metrics_qs["market_creator"] = "quickstart"
        trader_metrics.append(weekly_metrics_qs)
    # computation as specification 1 for pearl markets
    weekly_metrics_pearl = compute_trader_metrics_by_market_creator(
        trader, weekly_data, market_creator="pearl"
    )
    if len(weekly_metrics_pearl) > 0:
        weekly_metrics_pearl["month_year_week"] = week
        weekly_metrics_pearl["market_creator"] = "pearl"
        trader_metrics.append(weekly_metrics_pearl)
    result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
    return result


def merge_trader_daily_metrics(
    trader: str, daily_data: pd.DataFrame, day: str, live_metrics: bool = False
) -> pd.DataFrame:
    trader_metrics = []
    # computation as specification 1 for all types of markets
    daily_metrics_all = compute_trader_metrics_by_market_creator(
        trader, daily_data, market_creator="all", live_metrics=live_metrics
    )
    daily_metrics_all["creation_date"] = day
    # staking label is at the trader level
    daily_metrics_all["market_creator"] = "all"
    trader_metrics.append(daily_metrics_all)

    # computation as specification 1 for quickstart markets
    daily_metrics_qs = compute_trader_metrics_by_market_creator(
        trader, daily_data, market_creator="quickstart", live_metrics=live_metrics
    )
    if len(daily_metrics_qs) > 0:
        daily_metrics_qs["creation_date"] = day
        daily_metrics_qs["market_creator"] = "quickstart"
        trader_metrics.append(daily_metrics_qs)
    # computation as specification 1 for pearl markets
    daily_metrics_pearl = compute_trader_metrics_by_market_creator(
        trader, daily_data, market_creator="pearl", live_metrics=live_metrics
    )
    if len(daily_metrics_pearl) > 0:
        daily_metrics_pearl["creation_date"] = day
        daily_metrics_pearl["market_creator"] = "pearl"
        trader_metrics.append(daily_metrics_pearl)
    result = pd.DataFrame.from_dict(trader_metrics, orient="columns")
    return result


def win_metrics_trader_level(weekly_data):
    winning_trades = (
        weekly_data.groupby(
            ["month_year_week", "market_creator", "trader_address"], sort=False
        )["winning_trade"].sum()
        / weekly_data.groupby(
            ["month_year_week", "market_creator", "trader_address"], sort=False
        )["winning_trade"].count()
        * 100
    )
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.rename(columns={"winning_trade": "winning_perc"}, inplace=True)
    return winning_trades


def compute_weekly_metrics_by_market_creator(
    trader_agents_data: pd.DataFrame, trader_filter: str = None
) -> pd.DataFrame:
    """Function to compute the metrics at the trader level per week
    and with different categories by market creator"""
    contents = []
    all_weeks = list(trader_agents_data.month_year_week.unique())
    for week in all_weeks:
        weekly_data = trader_agents_data.loc[
            trader_agents_data["month_year_week"] == week
        ]
        print(f"Computing weekly metrics for week ={week} by market creator")
        # traverse each trader agent
        traders = list(weekly_data.trader_address.unique())
        for trader in tqdm(traders, desc=f"Trader' metrics", unit="metrics"):
            if trader_filter is None:
                contents.append(merge_trader_weekly_metrics(trader, weekly_data, week))
            elif trader_filter == "agent":
                filtered_data = weekly_data.loc[weekly_data["staking"] != "non_agent"]
                contents.append(
                    merge_trader_weekly_metrics(trader, filtered_data, week)
                )
            else:  # non_agent traders
                filtered_data = weekly_data.loc[weekly_data["staking"] == "non_agent"]
                contents.append(
                    merge_trader_weekly_metrics(trader, filtered_data, week)
                )

    print("End computing all weekly metrics by market creator")
    return pd.concat(contents, ignore_index=True)


def compute_daily_metrics_by_market_creator(
    trader_agents_data: pd.DataFrame,
    trader_filter: str = None,
    live_metrics: bool = False,
) -> pd.DataFrame:
    """Function to compute the metrics at the trader level per day
    and with different categories by market creator"""
    contents = []

    all_days = list(trader_agents_data.creation_date.unique())
    for day in all_days:
        daily_data = trader_agents_data.loc[trader_agents_data["creation_date"] == day]
        print(f"Computing daily metrics for {day}")
        # traverse each trader agent
        traders = list(daily_data.trader_address.unique())
        for trader in tqdm(traders, desc=f"Trader' daily metrics", unit="metrics"):
            if trader_filter is None:
                contents.append(
                    merge_trader_daily_metrics(trader, daily_data, day, live_metrics)
                )
            elif trader_filter == "agentic":
                filtered_data = daily_data.loc[daily_data["staking"] != "non_agent"]
                contents.append(
                    merge_trader_daily_metrics(trader, filtered_data, day, live_metrics)
                )
            else:  # non_agent traders
                filtered_data = daily_data.loc[daily_data["staking"] == "non_agent"]
                contents.append(
                    merge_trader_daily_metrics(trader, filtered_data, day, live_metrics)
                )
    print("End computing all daily metrics by market creator")
    return pd.concat(contents, ignore_index=True)


def compute_winning_metrics_by_trader(
    trader_agents_data: pd.DataFrame, trader_filter: str = None
) -> pd.DataFrame:
    """Function to compute the winning metrics at the trader level per week and with different market creators"""
    market_all = trader_agents_data.copy(deep=True)
    market_all["market_creator"] = "all"

    # merging both dataframes
    final_traders = pd.concat([market_all, trader_agents_data], ignore_index=True)
    final_traders = final_traders.sort_values(by="creation_timestamp", ascending=True)

    if trader_filter == "agentic":
        final_traders = final_traders.loc[final_traders["staking"] != "non_agent"]
    else:  # non_agent traders
        final_traders = final_traders.loc[final_traders["staking"] == "non_agent"]

    winning_df = win_metrics_trader_level(final_traders)
    winning_df.head()
    return winning_df