test_gradio / app.py
John Smith
Update app.py
eca103d
raw
history blame
1.24 kB
import tensorflow as tf
from keras.models import load_model
import gradio as gr
from matplotlib import pyplot as plt
import cv2
import numpy as np
model = load_model('eee.keras')
def image_mod(image_mod):
img = cv2.imread("Foggy_morning_Bucharest.jpg")
resize = tf.image.resize(img, (256, 256))
plt.imshow(resize.numpy().astype(int))
yhat = model.predict(np.expand_dims(resize,0))
display = np.argmax(yhat)
display = str(display)
if display == "0":
message = "Rainy" # Jida,_Zhuhai,_rainy_day.jpg
if display == "1":
message = "Foggy"
if display == "2":
message = "Cloudy"
if display == "3":
message = "Snowy" #Snow_on_Branches,_Beechview,_2020-12-17,_01.jpg
if display == "4":
message = "Sunny" # Daedalus_000355_171913_516869_4578_(36155269413).jpg
return message
gr.Interface(fn=image_mod,
inputs=gr.Image(shape=(256, 256)),
outputs=gr.Label(num_top_classes=3),
examples=["Daedalus_000355_171913_516869_4578_(36155269413).jpg","Utah_solar;_a_photovoltaic_power_station_(36293687776).jpg","Foggy_morning_Bucharest.jpg","Jida,_Zhuhai,_rainy_day.jpg","Snow_on_Branches,_Beechview,_2020-12-17,_01.jpg"]).launch()