File size: 1,239 Bytes
3ff10a0
ab3f808
a4fcc7e
559ec57
24d3233
b9cfa97
9e95b47
24d3233
cd13712
eca103d
0e74aec
 
 
ade45a8
c357975
d9ef855
c88e892
d9ef855
 
 
 
 
c70f16d
d9ef855
edb8459
d9ef855
a4fcc7e
d365b80
98224c2
cd13712
eca103d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import tensorflow as tf
from keras.models import load_model
import gradio as gr
from matplotlib import pyplot as plt
import cv2
import numpy as np
model = load_model('eee.keras')

def image_mod(image_mod):
    img = cv2.imread("Foggy_morning_Bucharest.jpg")
    resize = tf.image.resize(img, (256, 256))
    plt.imshow(resize.numpy().astype(int))
    yhat = model.predict(np.expand_dims(resize,0))
    display = np.argmax(yhat)
    display = str(display)
    if display == "0":
        message = "Rainy" # Jida,_Zhuhai,_rainy_day.jpg
    if display == "1":
        message = "Foggy"
    if display == "2":
        message = "Cloudy"
    if display == "3":
        message = "Snowy" #Snow_on_Branches,_Beechview,_2020-12-17,_01.jpg
    if display == "4":
        message = "Sunny" # Daedalus_000355_171913_516869_4578_(36155269413).jpg
    return message

gr.Interface(fn=image_mod,
             inputs=gr.Image(shape=(256, 256)),
             outputs=gr.Label(num_top_classes=3),
             examples=["Daedalus_000355_171913_516869_4578_(36155269413).jpg","Utah_solar;_a_photovoltaic_power_station_(36293687776).jpg","Foggy_morning_Bucharest.jpg","Jida,_Zhuhai,_rainy_day.jpg","Snow_on_Branches,_Beechview,_2020-12-17,_01.jpg"]).launch()