|
"""Basic Agent Evaluation Runner""" |
|
|
|
import inspect |
|
import os |
|
from typing import Any |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
|
|
from gagent.agents import registry |
|
from gagent.config import settings |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
"""A langgraph agent.""" |
|
|
|
def __init__(self, agent_type: str, **kwargs): |
|
print(f"BasicAgent initialized with type: {agent_type}") |
|
self.agent = registry.get_agent(agent_type=agent_type, **kwargs) |
|
|
|
def __call__(self, question: str, question_number: int | None, total_questions: int | None) -> str: |
|
print( |
|
f"\n{':' * 20}Agent received question ({question_number}/{total_questions}){':' * 20}\n{question}\n{'-' * 100}" |
|
) |
|
answer = self.agent.run(question, question_number=question_number, total_questions=total_questions) |
|
return answer |
|
|
|
|
|
def get_agent_parameters(agent_type: str) -> dict[str, Any]: |
|
"""Get the parameters for a specific agent type.""" |
|
if agent_type not in registry._agent_classes: |
|
return {} |
|
|
|
agent_class = registry._agent_classes[agent_type] |
|
init_signature = inspect.signature(agent_class.__init__) |
|
|
|
parameters = {} |
|
for name, param in init_signature.parameters.items(): |
|
if name == "self": |
|
continue |
|
|
|
|
|
default = param.default if param.default != inspect.Parameter.empty else None |
|
|
|
|
|
param_type = param.annotation if param.annotation != inspect.Parameter.empty else str |
|
|
|
|
|
description = "" |
|
if agent_class.__doc__: |
|
doc_lines = agent_class.__doc__.split("\n") |
|
for line in doc_lines: |
|
if f"{name}:" in line: |
|
description = line.split(":")[1].strip() |
|
break |
|
|
|
parameters[name] = { |
|
"type": param_type, |
|
"default": default, |
|
"description": description, |
|
} |
|
|
|
return parameters |
|
|
|
|
|
def get_settings_value(param_name: str) -> str: |
|
"""Get the value of a parameter from settings if available.""" |
|
return getattr(settings, param_name.upper(), "") |
|
|
|
|
|
def run_and_submit_all(request: gr.Request, profile: gr.OAuthProfile | None, *args): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. Optionally skips submission. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
|
|
available_agents = registry.list_available_agents() |
|
if not available_agents: |
|
return "No agents available in registry.", None |
|
|
|
agent_type = agent_type_dropdown.value |
|
|
|
|
|
if not agent_type or agent_type not in available_agents: |
|
print(f"Invalid agent type: {agent_type}, using first available agent") |
|
agent_type = available_agents[0] |
|
|
|
print(f"Running agent with type: {agent_type}") |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
parameters = {} |
|
agent_params = get_agent_parameters(agent_type) |
|
print(f"Agent {agent_type} parameters: {agent_params}") |
|
|
|
|
|
for i, (param_name, param_info) in enumerate(agent_params.items()): |
|
if i < len(parameter_inputs): |
|
parameters[param_name] = parameter_inputs[param_name].value |
|
print(f"Setting parameter {param_name} = {parameter_inputs[param_name].value}") |
|
|
|
print(f"Agent parameters: {parameters}") |
|
|
|
|
|
try: |
|
print(f"Initializing agent with type: {agent_type}") |
|
agent = BasicAgent(agent_type=agent_type, **parameters) |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
|
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
total_questions = len(questions_data) |
|
print(f"Running agent on {total_questions} questions...") |
|
|
|
|
|
progress = gr.Progress() |
|
|
|
for i, item in enumerate(questions_data, 1): |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
|
|
progress((i - 1) / total_questions) |
|
|
|
|
|
submitted_answer = agent(question_text, question_number=i, total_questions=total_questions) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append( |
|
{ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": submitted_answer, |
|
} |
|
) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append( |
|
{ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"AGENT ERROR: {e}", |
|
} |
|
) |
|
|
|
|
|
progress(1.0) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload, |
|
} |
|
status_update = f"Agent finished. Preparing {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
results_df = pd.DataFrame(results_log) |
|
if skip_submission: |
|
final_status = "Submission skipped as requested." |
|
print(final_status) |
|
return final_status, results_df |
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
return status_message, results_df |
|
|
|
|
|
|
|
all_parameter_inputs = {} |
|
|
|
|
|
parameter_inputs = {} |
|
|
|
skip_submission = True |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Select your agent type and configure its parameters. |
|
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
available_agents = registry.list_available_agents() |
|
if not available_agents: |
|
raise ValueError("No agents found in registry. Please check your agent implementations.") |
|
|
|
|
|
default_agent = settings.DEFAULT_AGENT |
|
if default_agent not in available_agents: |
|
default_agent = available_agents[0] |
|
print(f"Default agent '{settings.DEFAULT_AGENT}' not available, using '{default_agent}' instead") |
|
|
|
|
|
def on_agent_type_change(agent_type: str): |
|
"""Handle agent type change.""" |
|
print(f"Agent type changed to: {agent_type}") |
|
if not agent_type: |
|
return gr.Column(visible=False) |
|
|
|
param_col = create_parameter_inputs(agent_type) |
|
return param_col |
|
|
|
agent_type_dropdown = gr.Dropdown( |
|
choices=available_agents, |
|
label="Agent Type", |
|
value=default_agent, |
|
) |
|
|
|
|
|
parameter_container = gr.Column() |
|
|
|
def create_parameter_inputs(agent_type: str): |
|
"""Create parameter inputs for the selected agent type.""" |
|
global parameter_inputs |
|
|
|
if not agent_type: |
|
return gr.Column(visible=False) |
|
|
|
print(f"Creating parameter inputs for agent type: {agent_type}") |
|
|
|
parameters = get_agent_parameters(agent_type) |
|
|
|
|
|
if agent_type in all_parameter_inputs: |
|
parameter_inputs = all_parameter_inputs[agent_type] |
|
else: |
|
|
|
parameter_inputs = {} |
|
|
|
|
|
with gr.Column(visible=True) as param_col: |
|
for param_name, param_info in parameters.items(): |
|
|
|
if param_info["type"] == bool: |
|
input_component = gr.Checkbox( |
|
label=param_name, |
|
value=param_info["default"] or False, |
|
info=param_info["description"], |
|
) |
|
elif param_info["type"] == int: |
|
input_component = gr.Number( |
|
label=param_name, |
|
value=param_info["default"] or 0, |
|
info=param_info["description"], |
|
) |
|
elif param_info["type"] == float: |
|
input_component = gr.Number( |
|
label=param_name, |
|
value=param_info["default"] or 0.0, |
|
info=param_info["description"], |
|
) |
|
else: |
|
|
|
is_api_key = any(key in param_name.lower() for key in ["api", "key", "token"]) |
|
input_component = gr.Textbox( |
|
label=param_name, |
|
value=get_settings_value(param_name) or param_info["default"] or "", |
|
type="password" if is_api_key else "text", |
|
info=param_info["description"], |
|
) |
|
|
|
input_component.placeholder = "Leave blank for default from environment variable" |
|
parameter_inputs[param_name] = input_component |
|
|
|
|
|
all_parameter_inputs[agent_type] = parameter_inputs |
|
|
|
return param_col |
|
|
|
|
|
initial_params = create_parameter_inputs(default_agent) |
|
parameter_container = initial_params |
|
|
|
|
|
def update_parameter_inputs(agent_type): |
|
global parameter_inputs |
|
|
|
if agent_type in all_parameter_inputs: |
|
parameter_inputs = all_parameter_inputs[agent_type] |
|
return on_agent_type_change(agent_type) |
|
|
|
agent_type_dropdown.change( |
|
fn=update_parameter_inputs, |
|
inputs=[agent_type_dropdown], |
|
outputs=[parameter_container], |
|
) |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
skip_submission_checkbox = gr.Checkbox( |
|
label="Skip Submission", |
|
value=skip_submission, |
|
info="Check this box to run the agent without submitting answers to the scoring API.", |
|
) |
|
|
|
def update_skip_submission(val: bool): |
|
global skip_submission |
|
skip_submission = val |
|
|
|
skip_submission_checkbox.change( |
|
fn=update_skip_submission, |
|
inputs=[skip_submission_checkbox], |
|
outputs=[], |
|
) |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
inputs=[gr.State(), gr.State()], |
|
outputs=[status_output, results_table], |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-" * 30 + " App Starting " + "-" * 30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-" * (60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|