File size: 18,213 Bytes
a6998ef
 
 
10e9b7d
a6998ef
 
10e9b7d
3c4371f
a6998ef
 
 
 
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
31243f4
d59f015
a6998ef
 
31243f4
a6998ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
a6998ef
31243f4
7d65c66
a6998ef
3c4371f
7e4a06b
a6998ef
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
a6998ef
 
 
 
 
 
 
 
 
 
 
 
 
 
7e4a06b
31243f4
 
e80aab9
a6998ef
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
a6998ef
 
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
a6998ef
 
31243f4
e80aab9
31243f4
 
3c4371f
a6998ef
 
 
7d65c66
31243f4
 
e80aab9
a6998ef
 
 
b177367
7d65c66
 
a6998ef
 
 
 
 
 
 
31243f4
 
 
 
 
 
a6998ef
 
 
 
 
7d65c66
a6998ef
 
 
 
 
 
 
31243f4
a6998ef
 
 
 
 
 
 
 
 
 
 
31243f4
 
3c4371f
31243f4
 
a6998ef
 
 
 
 
 
 
31243f4
e80aab9
a6998ef
 
 
 
 
 
 
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
 
3c4371f
 
 
 
e80aab9
31243f4
 
 
7d65c66
31243f4
 
 
e80aab9
 
a6998ef
 
 
 
 
 
 
 
e80aab9
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
a6998ef
 
e514fd7
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
a6998ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
a6998ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
9088b99
7d65c66
e80aab9
31243f4
 
a6998ef
 
e80aab9
 
 
a6998ef
7d65c66
3c4371f
a6998ef
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
a6998ef
7d65c66
 
 
 
 
 
a6998ef
3c4371f
31243f4
a6998ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
"""Basic Agent Evaluation Runner"""

import inspect
import os
from typing import Any

import gradio as gr
import pandas as pd
import requests

from gagent.agents import registry
from gagent.config import settings

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------


class BasicAgent:
    """A langgraph agent."""

    def __init__(self, agent_type: str, **kwargs):
        print(f"BasicAgent initialized with type: {agent_type}")
        self.agent = registry.get_agent(agent_type=agent_type, **kwargs)

    def __call__(self, question: str, question_number: int | None, total_questions: int | None) -> str:
        print(
            f"\n{':' * 20}Agent received question ({question_number}/{total_questions}){':' * 20}\n{question}\n{'-' * 100}"
        )
        answer = self.agent.run(question, question_number=question_number, total_questions=total_questions)
        return answer


def get_agent_parameters(agent_type: str) -> dict[str, Any]:
    """Get the parameters for a specific agent type."""
    if agent_type not in registry._agent_classes:
        return {}

    agent_class = registry._agent_classes[agent_type]
    init_signature = inspect.signature(agent_class.__init__)

    parameters = {}
    for name, param in init_signature.parameters.items():
        if name == "self":
            continue

        # Get default value if available
        default = param.default if param.default != inspect.Parameter.empty else None

        # Get parameter type
        param_type = param.annotation if param.annotation != inspect.Parameter.empty else str

        # Get parameter description from docstring if available
        description = ""
        if agent_class.__doc__:
            doc_lines = agent_class.__doc__.split("\n")
            for line in doc_lines:
                if f"{name}:" in line:
                    description = line.split(":")[1].strip()
                    break

        parameters[name] = {
            "type": param_type,
            "default": default,
            "description": description,
        }

    return parameters


def get_settings_value(param_name: str) -> str:
    """Get the value of a parameter from settings if available."""
    return getattr(settings, param_name.upper(), "")


def run_and_submit_all(request: gr.Request, profile: gr.OAuthProfile | None, *args):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results. Optionally skips submission.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    # Get available agents from registry
    available_agents = registry.list_available_agents()
    if not available_agents:
        return "No agents available in registry.", None

    agent_type = agent_type_dropdown.value

    # Validate agent type
    if not agent_type or agent_type not in available_agents:
        print(f"Invalid agent type: {agent_type}, using first available agent")
        agent_type = available_agents[0]

    print(f"Running agent with type: {agent_type}")  # Debug log

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Get parameters from args
    parameters = {}
    agent_params = get_agent_parameters(agent_type)
    print(f"Agent {agent_type} parameters: {agent_params}")  # Debug log

    # Map input values to their corresponding parameters
    for i, (param_name, param_info) in enumerate(agent_params.items()):
        if i < len(parameter_inputs):
            parameters[param_name] = parameter_inputs[param_name].value
            print(f"Setting parameter {param_name} = {parameter_inputs[param_name].value}")  # Debug log

    print(f"Agent parameters: {parameters}")  # Debug log

    # 1. Instantiate Agent
    try:
        print(f"Initializing agent with type: {agent_type}")
        agent = BasicAgent(agent_type=agent_type, **parameters)
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # # TODO: Remove this
    # questions_data = questions_data[:3]

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    total_questions = len(questions_data)
    print(f"Running agent on {total_questions} questions...")

    # Create a progress bar
    progress = gr.Progress()

    for i, item in enumerate(questions_data, 1):
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            # Update progress
            progress((i - 1) / total_questions)

            # Run agent with progress info
            submitted_answer = agent(question_text, question_number=i, total_questions=total_questions)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append(
                {
                    "Task ID": task_id,
                    "Question": question_text,
                    "Submitted Answer": submitted_answer,
                }
            )
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append(
                {
                    "Task ID": task_id,
                    "Question": question_text,
                    "Submitted Answer": f"AGENT ERROR: {e}",
                }
            )

    # Complete progress bar
    progress(1.0)

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload,
    }
    status_update = f"Agent finished. Preparing {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit (or Skip)
    results_df = pd.DataFrame(results_log)
    if skip_submission:
        final_status = "Submission skipped as requested."
        print(final_status)
        return final_status, results_df

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        return status_message, results_df


# Dictionary to store parameter inputs for each agent type
all_parameter_inputs = {}

# Initialize parameter inputs dictionary
parameter_inputs = {}

skip_submission = True

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Select your agent type and configure its parameters.
        4.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    with gr.Row():
        with gr.Column():
            # Get available agents from registry
            available_agents = registry.list_available_agents()
            if not available_agents:
                raise ValueError("No agents found in registry. Please check your agent implementations.")

            # Get default agent from settings
            default_agent = settings.DEFAULT_AGENT
            if default_agent not in available_agents:
                default_agent = available_agents[0]  # Fallback to first available agent
                print(f"Default agent '{settings.DEFAULT_AGENT}' not available, using '{default_agent}' instead")

            # Create agent type dropdown with change handler
            def on_agent_type_change(agent_type: str):
                """Handle agent type change."""
                print(f"Agent type changed to: {agent_type}")
                if not agent_type:
                    return gr.Column(visible=False)

                param_col = create_parameter_inputs(agent_type)
                return param_col

            agent_type_dropdown = gr.Dropdown(
                choices=available_agents,
                label="Agent Type",
                value=default_agent,  # Use default agent from settings
            )

            # Create a container for parameter inputs
            parameter_container = gr.Column()

            def create_parameter_inputs(agent_type: str):
                """Create parameter inputs for the selected agent type."""
                global parameter_inputs

                if not agent_type:
                    return gr.Column(visible=False)

                print(f"Creating parameter inputs for agent type: {agent_type}")

                parameters = get_agent_parameters(agent_type)

                # Check if we already have inputs for this agent type
                if agent_type in all_parameter_inputs:
                    parameter_inputs = all_parameter_inputs[agent_type]
                else:
                    # Create new parameter inputs
                    parameter_inputs = {}

                    # Create a new column for parameters
                    with gr.Column(visible=True) as param_col:
                        for param_name, param_info in parameters.items():
                            # Determine input type based on parameter type
                            if param_info["type"] == bool:
                                input_component = gr.Checkbox(
                                    label=param_name,
                                    value=param_info["default"] or False,
                                    info=param_info["description"],
                                )
                            elif param_info["type"] == int:
                                input_component = gr.Number(
                                    label=param_name,
                                    value=param_info["default"] or 0,
                                    info=param_info["description"],
                                )
                            elif param_info["type"] == float:
                                input_component = gr.Number(
                                    label=param_name,
                                    value=param_info["default"] or 0.0,
                                    info=param_info["description"],
                                )
                            else:  # Default to text input
                                # Check if this is likely an API key
                                is_api_key = any(key in param_name.lower() for key in ["api", "key", "token"])
                                input_component = gr.Textbox(
                                    label=param_name,
                                    value=get_settings_value(param_name) or param_info["default"] or "",
                                    type="password" if is_api_key else "text",
                                    info=param_info["description"],
                                )

                            input_component.placeholder = "Leave blank for default from environment variable"
                            parameter_inputs[param_name] = input_component

                    # Store in our dictionary
                    all_parameter_inputs[agent_type] = parameter_inputs

                return param_col

            # Create initial parameter inputs for default agent
            initial_params = create_parameter_inputs(default_agent)
            parameter_container = initial_params

            # Update parameter inputs when agent type changes
            def update_parameter_inputs(agent_type):
                global parameter_inputs
                # Update the parameter_inputs reference
                if agent_type in all_parameter_inputs:
                    parameter_inputs = all_parameter_inputs[agent_type]
                return on_agent_type_change(agent_type)

            agent_type_dropdown.change(
                fn=update_parameter_inputs,
                inputs=[agent_type_dropdown],
                outputs=[parameter_container],
            )

    run_button = gr.Button("Run Evaluation & Submit All Answers")
    skip_submission_checkbox = gr.Checkbox(
        label="Skip Submission",
        value=skip_submission,
        info="Check this box to run the agent without submitting answers to the scoring API.",
    )

    def update_skip_submission(val: bool):
        global skip_submission
        skip_submission = val

    skip_submission_checkbox.change(
        fn=update_skip_submission,
        inputs=[skip_submission_checkbox],
        outputs=[],
    )

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        inputs=[gr.State(), gr.State()],
        outputs=[status_output, results_table],
    )

if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)