File size: 18,213 Bytes
a6998ef 10e9b7d a6998ef 10e9b7d 3c4371f a6998ef 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 a6998ef 31243f4 a6998ef 31243f4 a6998ef 31243f4 7d65c66 a6998ef 3c4371f 7e4a06b a6998ef 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f a6998ef 7e4a06b 31243f4 e80aab9 a6998ef 31243f4 a6998ef 31243f4 3c4371f 31243f4 b177367 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 a6998ef 31243f4 e80aab9 31243f4 3c4371f a6998ef 7d65c66 31243f4 e80aab9 a6998ef b177367 7d65c66 a6998ef 31243f4 a6998ef 7d65c66 a6998ef 31243f4 a6998ef 31243f4 3c4371f 31243f4 a6998ef 31243f4 e80aab9 a6998ef 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 3c4371f 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 a6998ef e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 a6998ef e514fd7 e80aab9 7e4a06b e80aab9 a6998ef 31243f4 a6998ef e80aab9 9088b99 7d65c66 e80aab9 31243f4 a6998ef e80aab9 a6998ef 7d65c66 3c4371f a6998ef 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 a6998ef 7d65c66 a6998ef 3c4371f 31243f4 a6998ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
"""Basic Agent Evaluation Runner"""
import inspect
import os
from typing import Any
import gradio as gr
import pandas as pd
import requests
from gagent.agents import registry
from gagent.config import settings
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
"""A langgraph agent."""
def __init__(self, agent_type: str, **kwargs):
print(f"BasicAgent initialized with type: {agent_type}")
self.agent = registry.get_agent(agent_type=agent_type, **kwargs)
def __call__(self, question: str, question_number: int | None, total_questions: int | None) -> str:
print(
f"\n{':' * 20}Agent received question ({question_number}/{total_questions}){':' * 20}\n{question}\n{'-' * 100}"
)
answer = self.agent.run(question, question_number=question_number, total_questions=total_questions)
return answer
def get_agent_parameters(agent_type: str) -> dict[str, Any]:
"""Get the parameters for a specific agent type."""
if agent_type not in registry._agent_classes:
return {}
agent_class = registry._agent_classes[agent_type]
init_signature = inspect.signature(agent_class.__init__)
parameters = {}
for name, param in init_signature.parameters.items():
if name == "self":
continue
# Get default value if available
default = param.default if param.default != inspect.Parameter.empty else None
# Get parameter type
param_type = param.annotation if param.annotation != inspect.Parameter.empty else str
# Get parameter description from docstring if available
description = ""
if agent_class.__doc__:
doc_lines = agent_class.__doc__.split("\n")
for line in doc_lines:
if f"{name}:" in line:
description = line.split(":")[1].strip()
break
parameters[name] = {
"type": param_type,
"default": default,
"description": description,
}
return parameters
def get_settings_value(param_name: str) -> str:
"""Get the value of a parameter from settings if available."""
return getattr(settings, param_name.upper(), "")
def run_and_submit_all(request: gr.Request, profile: gr.OAuthProfile | None, *args):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results. Optionally skips submission.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# Get available agents from registry
available_agents = registry.list_available_agents()
if not available_agents:
return "No agents available in registry.", None
agent_type = agent_type_dropdown.value
# Validate agent type
if not agent_type or agent_type not in available_agents:
print(f"Invalid agent type: {agent_type}, using first available agent")
agent_type = available_agents[0]
print(f"Running agent with type: {agent_type}") # Debug log
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Get parameters from args
parameters = {}
agent_params = get_agent_parameters(agent_type)
print(f"Agent {agent_type} parameters: {agent_params}") # Debug log
# Map input values to their corresponding parameters
for i, (param_name, param_info) in enumerate(agent_params.items()):
if i < len(parameter_inputs):
parameters[param_name] = parameter_inputs[param_name].value
print(f"Setting parameter {param_name} = {parameter_inputs[param_name].value}") # Debug log
print(f"Agent parameters: {parameters}") # Debug log
# 1. Instantiate Agent
try:
print(f"Initializing agent with type: {agent_type}")
agent = BasicAgent(agent_type=agent_type, **parameters)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# # TODO: Remove this
# questions_data = questions_data[:3]
# 3. Run your Agent
results_log = []
answers_payload = []
total_questions = len(questions_data)
print(f"Running agent on {total_questions} questions...")
# Create a progress bar
progress = gr.Progress()
for i, item in enumerate(questions_data, 1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
# Update progress
progress((i - 1) / total_questions)
# Run agent with progress info
submitted_answer = agent(question_text, question_number=i, total_questions=total_questions)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer,
}
)
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append(
{
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}",
}
)
# Complete progress bar
progress(1.0)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
status_update = f"Agent finished. Preparing {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit (or Skip)
results_df = pd.DataFrame(results_log)
if skip_submission:
final_status = "Submission skipped as requested."
print(final_status)
return final_status, results_df
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
return status_message, results_df
# Dictionary to store parameter inputs for each agent type
all_parameter_inputs = {}
# Initialize parameter inputs dictionary
parameter_inputs = {}
skip_submission = True
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Select your agent type and configure its parameters.
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
with gr.Row():
with gr.Column():
# Get available agents from registry
available_agents = registry.list_available_agents()
if not available_agents:
raise ValueError("No agents found in registry. Please check your agent implementations.")
# Get default agent from settings
default_agent = settings.DEFAULT_AGENT
if default_agent not in available_agents:
default_agent = available_agents[0] # Fallback to first available agent
print(f"Default agent '{settings.DEFAULT_AGENT}' not available, using '{default_agent}' instead")
# Create agent type dropdown with change handler
def on_agent_type_change(agent_type: str):
"""Handle agent type change."""
print(f"Agent type changed to: {agent_type}")
if not agent_type:
return gr.Column(visible=False)
param_col = create_parameter_inputs(agent_type)
return param_col
agent_type_dropdown = gr.Dropdown(
choices=available_agents,
label="Agent Type",
value=default_agent, # Use default agent from settings
)
# Create a container for parameter inputs
parameter_container = gr.Column()
def create_parameter_inputs(agent_type: str):
"""Create parameter inputs for the selected agent type."""
global parameter_inputs
if not agent_type:
return gr.Column(visible=False)
print(f"Creating parameter inputs for agent type: {agent_type}")
parameters = get_agent_parameters(agent_type)
# Check if we already have inputs for this agent type
if agent_type in all_parameter_inputs:
parameter_inputs = all_parameter_inputs[agent_type]
else:
# Create new parameter inputs
parameter_inputs = {}
# Create a new column for parameters
with gr.Column(visible=True) as param_col:
for param_name, param_info in parameters.items():
# Determine input type based on parameter type
if param_info["type"] == bool:
input_component = gr.Checkbox(
label=param_name,
value=param_info["default"] or False,
info=param_info["description"],
)
elif param_info["type"] == int:
input_component = gr.Number(
label=param_name,
value=param_info["default"] or 0,
info=param_info["description"],
)
elif param_info["type"] == float:
input_component = gr.Number(
label=param_name,
value=param_info["default"] or 0.0,
info=param_info["description"],
)
else: # Default to text input
# Check if this is likely an API key
is_api_key = any(key in param_name.lower() for key in ["api", "key", "token"])
input_component = gr.Textbox(
label=param_name,
value=get_settings_value(param_name) or param_info["default"] or "",
type="password" if is_api_key else "text",
info=param_info["description"],
)
input_component.placeholder = "Leave blank for default from environment variable"
parameter_inputs[param_name] = input_component
# Store in our dictionary
all_parameter_inputs[agent_type] = parameter_inputs
return param_col
# Create initial parameter inputs for default agent
initial_params = create_parameter_inputs(default_agent)
parameter_container = initial_params
# Update parameter inputs when agent type changes
def update_parameter_inputs(agent_type):
global parameter_inputs
# Update the parameter_inputs reference
if agent_type in all_parameter_inputs:
parameter_inputs = all_parameter_inputs[agent_type]
return on_agent_type_change(agent_type)
agent_type_dropdown.change(
fn=update_parameter_inputs,
inputs=[agent_type_dropdown],
outputs=[parameter_container],
)
run_button = gr.Button("Run Evaluation & Submit All Answers")
skip_submission_checkbox = gr.Checkbox(
label="Skip Submission",
value=skip_submission,
info="Check this box to run the agent without submitting answers to the scoring API.",
)
def update_skip_submission(val: bool):
global skip_submission
skip_submission = val
skip_submission_checkbox.change(
fn=update_skip_submission,
inputs=[skip_submission_checkbox],
outputs=[],
)
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
inputs=[gr.State(), gr.State()],
outputs=[status_output, results_table],
)
if __name__ == "__main__":
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-" * (60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)
|