ultralight99's picture
Added files
0f921d3
raw
history blame contribute delete
5.63 kB
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import psutil
import matplotlib.pyplot as plt
import seaborn as sns
import time
import os
from huggingface_hub import login
import numpy as np
# Streamlit app configuration
st.set_page_config(page_title="DeepSeek Tuning App", layout="wide")
st.title("DeepSeek Model Tuning for RAM and Context Length")
# Sidebar for user inputs
st.sidebar.header("Configuration")
model_choice = st.sidebar.selectbox(
"Select DeepSeek Model",
["deepseek-ai/deepseek-v2", "deepseek-ai/deepseek-coder-6.7b-instruct"],
help="Select an available DeepSeek model."
)
context_length = st.sidebar.slider("Max Context Length", 1024, 16384, 4096, step=1024)
quantization = st.sidebar.checkbox("Enable 4-bit Quantization", value=True)
hf_token = st.sidebar.text_input("Hugging Face Token (optional)", type="password")
run_button = st.sidebar.button("Run Model")
# Function to get RAM usage
def get_ram_usage():
return psutil.virtual_memory().percent
# Function to install and load the model
@st.cache_resource
def load_model(model_name, quantize=False, token=None):
try:
if token:
st.write("Logging in to Hugging Face with provided token...")
login(token)
st.write(f"Loading {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=token)
if quantize and torch.cuda.is_available():
from bitsandbytes import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
quantization_config=bnb_config,
device_map="auto",
token=token
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
token=token
)
return model, tokenizer
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.write("Please verify the model name on https://huggingface.co/models or provide a valid token.")
return None, None
# Function to tune and run inference
def run_inference(model, tokenizer, context_len):
ram_usages = []
inference_times = []
prompt = "Write a detailed essay about artificial intelligence advancements." * (context_len // 50)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=context_len)
if torch.cuda.is_available():
inputs = inputs.to("cuda")
start_time = time.time()
ram_before = get_ram_usage()
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=100)
ram_after = get_ram_usage()
inference_time = time.time() - start_time
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
ram_usages.extend([ram_before, ram_after])
inference_times.append(inference_time)
return result, ram_usages, inference_times
# Visualization function
def plot_results(ram_usages, inference_times, context_len):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
# RAM Usage Plot
sns.barplot(x=["Before", "After"], y=ram_usages, ax=ax1)
ax1.set_title(f"RAM Usage (%) - Context Length: {context_len}")
ax1.set_ylabel("RAM Usage (%)")
# Inference Time Plot
sns.barplot(x=["Inference"], y=inference_times, ax=ax2)
ax2.set_title("Inference Time (seconds)")
ax2.set_ylabel("Time (s)")
st.pyplot(fig)
# Main execution
if run_button:
with st.spinner("Installing and tuning the model..."):
# Install bitsandbytes if quantization is enabled
if quantization and not os.path.exists("./bnb_installed"):
st.write("Installing bitsandbytes for quantization...")
os.system("pip install bitsandbytes")
with open("./bnb_installed", "w") as f:
f.write("installed")
# Load model
model, tokenizer = load_model(model_choice, quantization, hf_token if hf_token else None)
if model is None or tokenizer is None:
st.stop()
# Tune for max RAM and context length
st.write(f"Tuning {model_choice} with context length {context_length}...")
# Run inference
result, ram_usages, inference_times = run_inference(model, tokenizer, context_length)
# Display results
st.subheader("Generated Output")
st.write(result)
st.subheader("Performance Metrics")
plot_results(ram_usages, inference_times, context_length)
# Additional info
st.write(f"Max Context Length Used: {context_length}")
st.write(f"Quantization Enabled: {quantization}")
st.write(f"Average RAM Usage: {np.mean(ram_usages):.2f}%")
st.write(f"Inference Time: {inference_times[0]:.2f} seconds")
# Instructions for user
st.markdown("""
### Instructions
1. Select a DeepSeek model from the sidebar.
2. Adjust the context length (higher values use more RAM).
3. Enable quantization to reduce RAM usage (optional).
4. Provide a Hugging Face token if the model is private.
5. Click 'Run Model' to install, tune, and visualize results.
**Note:** Ensure the model name is correct and accessible.
""")