File size: 5,633 Bytes
cd49348
d2b9475
 
 
 
 
 
 
0f921d3
d2b9475
cd49348
d2b9475
 
 
 
 
 
 
 
0f921d3
 
d2b9475
0f921d3
d2b9475
0f921d3
d2b9475
 
 
 
 
 
 
 
0f921d3
d2b9475
0f921d3
 
 
 
d2b9475
0f921d3
d2b9475
0f921d3
 
 
 
 
 
 
 
 
 
d2b9475
0f921d3
 
 
 
 
 
 
 
d2b9475
 
0f921d3
d2b9475
 
 
0f921d3
d2b9475
 
0f921d3
 
 
 
 
d2b9475
0f921d3
 
 
d2b9475
0f921d3
 
d2b9475
0f921d3
d2b9475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f921d3
 
 
 
 
d2b9475
 
 
0f921d3
d2b9475
 
 
 
 
 
 
0f921d3
d2b9475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f921d3
d2b9475
 
0f921d3
 
 
d2b9475
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import psutil
import matplotlib.pyplot as plt
import seaborn as sns
import time
import os
from huggingface_hub import login
import numpy as np

# Streamlit app configuration
st.set_page_config(page_title="DeepSeek Tuning App", layout="wide")
st.title("DeepSeek Model Tuning for RAM and Context Length")

# Sidebar for user inputs
st.sidebar.header("Configuration")
model_choice = st.sidebar.selectbox(
    "Select DeepSeek Model", 
    ["deepseek-ai/deepseek-v2", "deepseek-ai/deepseek-coder-6.7b-instruct"],
    help="Select an available DeepSeek model."
)
context_length = st.sidebar.slider("Max Context Length", 1024, 16384, 4096, step=1024)
quantization = st.sidebar.checkbox("Enable 4-bit Quantization", value=True)
hf_token = st.sidebar.text_input("Hugging Face Token (optional)", type="password")
run_button = st.sidebar.button("Run Model")

# Function to get RAM usage
def get_ram_usage():
    return psutil.virtual_memory().percent

# Function to install and load the model
@st.cache_resource
def load_model(model_name, quantize=False, token=None):
    try:
        if token:
            st.write("Logging in to Hugging Face with provided token...")
            login(token)
        
        st.write(f"Loading {model_name}...")
        tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=token)
        
        if quantize and torch.cuda.is_available():
            from bitsandbytes import BitsAndBytesConfig
            bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16)
            model = AutoModelForCausalLM.from_pretrained(
                model_name, 
                trust_remote_code=True, 
                quantization_config=bnb_config,
                device_map="auto",
                token=token
            )
        else:
            model = AutoModelForCausalLM.from_pretrained(
                model_name, 
                trust_remote_code=True, 
                torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
                device_map="auto",
                token=token
            )
        return model, tokenizer
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        st.write("Please verify the model name on https://huggingface.co/models or provide a valid token.")
        return None, None

# Function to tune and run inference
def run_inference(model, tokenizer, context_len):
    ram_usages = []
    inference_times = []
    prompt = "Write a detailed essay about artificial intelligence advancements." * (context_len // 50)
    
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=context_len)
    if torch.cuda.is_available():
        inputs = inputs.to("cuda")
    
    start_time = time.time()
    ram_before = get_ram_usage()
    with torch.no_grad():
        outputs = model.generate(**inputs, max_new_tokens=100)
    ram_after = get_ram_usage()
    inference_time = time.time() - start_time
    
    result = tokenizer.decode(outputs[0], skip_special_tokens=True)
    ram_usages.extend([ram_before, ram_after])
    inference_times.append(inference_time)
    return result, ram_usages, inference_times

# Visualization function
def plot_results(ram_usages, inference_times, context_len):
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
    
    # RAM Usage Plot
    sns.barplot(x=["Before", "After"], y=ram_usages, ax=ax1)
    ax1.set_title(f"RAM Usage (%) - Context Length: {context_len}")
    ax1.set_ylabel("RAM Usage (%)")
    
    # Inference Time Plot
    sns.barplot(x=["Inference"], y=inference_times, ax=ax2)
    ax2.set_title("Inference Time (seconds)")
    ax2.set_ylabel("Time (s)")
    
    st.pyplot(fig)

# Main execution
if run_button:
    with st.spinner("Installing and tuning the model..."):
        # Install bitsandbytes if quantization is enabled
        if quantization and not os.path.exists("./bnb_installed"):
            st.write("Installing bitsandbytes for quantization...")
            os.system("pip install bitsandbytes")
            with open("./bnb_installed", "w") as f:
                f.write("installed")
        
        # Load model
        model, tokenizer = load_model(model_choice, quantization, hf_token if hf_token else None)
        if model is None or tokenizer is None:
            st.stop()
        
        # Tune for max RAM and context length
        st.write(f"Tuning {model_choice} with context length {context_length}...")
        
        # Run inference
        result, ram_usages, inference_times = run_inference(model, tokenizer, context_length)
        
        # Display results
        st.subheader("Generated Output")
        st.write(result)
        
        st.subheader("Performance Metrics")
        plot_results(ram_usages, inference_times, context_length)
        
        # Additional info
        st.write(f"Max Context Length Used: {context_length}")
        st.write(f"Quantization Enabled: {quantization}")
        st.write(f"Average RAM Usage: {np.mean(ram_usages):.2f}%")
        st.write(f"Inference Time: {inference_times[0]:.2f} seconds")

# Instructions for user
st.markdown("""
### Instructions
1. Select a DeepSeek model from the sidebar.
2. Adjust the context length (higher values use more RAM).
3. Enable quantization to reduce RAM usage (optional).
4. Provide a Hugging Face token if the model is private.
5. Click 'Run Model' to install, tune, and visualize results.
**Note:** Ensure the model name is correct and accessible.
""")