File size: 7,749 Bytes
7c5aa99
0430da2
4a4435c
 
 
0430da2
4a4435c
0430da2
 
4a4435c
 
 
0430da2
4a4435c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5aa99
0430da2
4a4435c
 
 
0430da2
4a4435c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0430da2
4a4435c
 
 
 
 
0430da2
4a4435c
 
 
 
 
 
 
 
 
 
 
 
1c51cb8
7c5aa99
0430da2
7c5aa99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c51cb8
 
4a4435c
7c5aa99
4a4435c
7c5aa99
4a4435c
 
 
 
 
7c5aa99
4a4435c
 
 
7c5aa99
4a4435c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c51cb8
0430da2
 
 
4a4435c
0430da2
4a4435c
0430da2
 
 
4a4435c
 
 
 
 
 
7c5aa99
4a4435c
 
 
 
 
 
 
 
 
 
0430da2
4a4435c
0430da2
 
7c5aa99
 
 
 
 
4a4435c
 
0430da2
4a4435c
 
 
0430da2
4a4435c
 
 
 
 
 
 
 
 
 
 
 
 
0430da2
 
7c5aa99
0430da2
 
4a4435c
0430da2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
import gradio as gr
import requests
import json
import re
from io import BytesIO
import matplotlib.pyplot as plt
from train_tokenizer import train_tokenizer
from datasets import load_dataset
from tokenizers import Tokenizer
import tempfile
import os

def fetch_splits(dataset_name):
    try:
        response = requests.get(
            f"https://datasets-server.huggingface.co/splits?dataset={dataset_name}",
            timeout=10
        )
        response.raise_for_status()
        data = response.json()
        
        splits_info = {}
        for split in data['splits']:
            config = split['config']
            split_name = split['split']
            if config not in splits_info:
                splits_info[config] = []
            splits_info[config].append(split_name)
        
        return {
            "splits": splits_info,
            "viewer_template": f"https://huggingface.co/datasets/{dataset_name}/embed/viewer/{{config}}/{{split}}"
        }
    except Exception as e:
        raise gr.Error(f"Σφάλμα κατά την ανάκτηση των splits: {str(e)}")

def update_components(dataset_name):
    if not dataset_name:
        return [gr.Dropdown.update(choices=[], value=None), gr.Dropdown.update(choices=[]), gr.HTML.update(value="")]
    
    try:
        splits_data = fetch_splits(dataset_name)
        config_choices = list(splits_data['splits'].keys())
        
        first_config = config_choices[0] if config_choices else None
        iframe_html = f"""
        <iframe
            src="{splits_data['viewer_template'].format(config=first_config, split='train')}"
            frameborder="0"
            width="100%"
            height="560px"
        ></iframe>
        """ if first_config else "Δεν βρέθηκαν διαθέσιμα δεδομένα"
        
        return [
            gr.Dropdown.update(choices=config_choices, value=first_config),
            gr.Dropdown.update(choices=splits_data['splits'].get(first_config, [])),
            gr.HTML.update(value=iframe_html)
        ]
    except Exception as e:
        raise gr.Error(f"Σφάλμα: {str(e)}")

def update_split_choices(dataset_name, config):
    if not dataset_name or not config:
        return gr.Dropdown.update(choices=[])
    
    try:
        splits_data = fetch_splits(dataset_name)
        return gr.Dropdown.update(choices=splits_data['splits'].get(config, []))
    except:
        return gr.Dropdown.update(choices=[])

def create_iterator(dataset_name, config, split):
    try:
        dataset = load_dataset(
            dataset_name,
            name=config,
            split=split,
            streaming=True
        )
        for example in dataset:
            yield example.get('text', '')
    except Exception as e:
        raise gr.Error(f"Σφάλμα φόρτωσης dataset: {str(e)}")

def train_and_test(dataset_name, config, split, vocab_size, min_freq, test_text, custom_files):
    try:
        dataset_iterator = create_iterator(dataset_name, config, split)
        
        # Συνδυασμός iterator από το streaming dataset και των custom αρχείων
        def combined_iterator():
            # Δεδομένα από το streaming dataset
            for text in dataset_iterator:
                if text:
                    yield text
            # Δεδομένα από τα custom αρχεία (αναμένεται λίστα με file paths)
            if custom_files:
                for file_path in custom_files:
                    try:
                        with open(file_path, 'r', encoding='utf-8') as f:
                            content = f.read()
                            if content:
                                yield content
                    except Exception as file_error:
                        print(f"Σφάλμα ανάγνωσης αρχείου {file_path}: {file_error}")
        
        with gr.Progress() as progress:
            progress(0.2, desc="Δημιουργία tokenizer...")
            tokenizer = train_tokenizer(combined_iterator(), vocab_size, min_freq)
        
        # Αποθήκευση και φόρτωση του εκπαιδευμένου tokenizer
        with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as f:
            tokenizer.save(f.name)
            trained_tokenizer = Tokenizer.from_file(f.name)
        os.unlink(f.name)
        
        # Validation: κωδικοποίηση και αποκωδικοποίηση του test κειμένου
        encoded = trained_tokenizer.encode(test_text)
        decoded = trained_tokenizer.decode(encoded.ids)
        
        # Δημιουργία γραφήματος για την κατανομή των μηκών των tokens
        token_lengths = [len(t) for t in encoded.tokens]
        fig = plt.figure()
        plt.hist(token_lengths, bins=20)
        plt.xlabel('Μήκος Token')
        plt.ylabel('Συχνότητα')
        img_buffer = BytesIO()
        plt.savefig(img_buffer, format='png')
        plt.close()
        
        return {
            "Πρωτότυπο Κείμενο": test_text,
            "Αποκωδικοποιημένο": decoded,
            "Αριθμός Tokens": len(encoded.tokens),
            "Αγνώστων Tokens": sum(1 for t in encoded.tokens if t == "<unk>")
        }, img_buffer.getvalue()
        
    except Exception as e:
        raise gr.Error(f"Σφάλμα εκπαίδευσης: {str(e)}")

# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("## Wikipedia Tokenizer Trainer")
    
    with gr.Row():
        with gr.Column():
            dataset_name = gr.Textbox(
                label="Dataset Name",
                value="wikimedia/wikipedia",
                placeholder="π.χ. 'wikimedia/wikipedia'"
            )
            config = gr.Dropdown(
                label="Config (π.χ. '20231101.el' για ελληνικά ή '20231101.en' για αγγλικά)",
                choices=[],
                interactive=True
            )
            split = gr.Dropdown(
                label="Split",
                choices=[],
                value="train"
            )
            vocab_size = gr.Slider(20000, 100000, value=50000, label="Μέγεθος Λεξιλογίου")
            min_freq = gr.Slider(1, 100, value=3, label="Ελάχιστη Συχνότητα")
            test_text = gr.Textbox(
                value='Η Ακρόπολη είναι σύμβολο της αρχαίας ελληνικής πολιτισμικής κληρονομιάς.',
                label="Test Text"
            )
            custom_files = gr.File(
                label="Προσαρμοσμένα Ελληνικά Κείμενα",
                file_count="multiple",
                type="file"
            )
            train_btn = gr.Button("Εκπαίδευση", variant="primary")
            
        with gr.Column():
            preview = gr.HTML(label="Dataset Preview")
            results_json = gr.JSON(label="Αποτελέσματα")
            results_plot = gr.Image(label="Κατανομή Μηκών Tokens")

    # Event handlers
    dataset_name.change(
        fn=update_components,
        inputs=dataset_name,
        outputs=[config, split, preview]
    )
    
    config.change(
        fn=update_split_choices,
        inputs=[dataset_name, config],
        outputs=split
    )
    
    train_btn.click(
        fn=train_and_test,
        inputs=[dataset_name, config, split, vocab_size, min_freq, test_text, custom_files],
        outputs=[results_json, results_plot]
    )

if __name__ == "__main__":
    demo.launch()