Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from io import BytesIO
|
5 |
+
from train_tokenizer import train_tokenizer
|
6 |
+
from tokenizers import Tokenizer
|
7 |
+
from datasets import load_dataset
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
|
11 |
+
def create_iterator(files=None, dataset_name=None, split="train", streaming=True):
|
12 |
+
if dataset_name:
|
13 |
+
dataset = load_dataset(dataset_name, split=split, streaming=streaming)
|
14 |
+
for example in dataset:
|
15 |
+
yield example['text']
|
16 |
+
elif files:
|
17 |
+
for file in files:
|
18 |
+
with open(file.name, 'r', encoding='utf-8') as f:
|
19 |
+
for line in f:
|
20 |
+
yield line.strip()
|
21 |
+
|
22 |
+
def enhanced_validation(tokenizer, test_text):
|
23 |
+
encoded = tokenizer.encode(test_text)
|
24 |
+
decoded = tokenizer.decode(encoded.ids)
|
25 |
+
|
26 |
+
# Ανάλυση Unknown Tokens
|
27 |
+
unknown_tokens = sum(1 for t in encoded.tokens if t == "<unk>")
|
28 |
+
unknown_percent = unknown_tokens / len(encoded.tokens) * 100 if encoded.tokens else 0
|
29 |
+
|
30 |
+
# Κατανομή μηκών tokens
|
31 |
+
token_lengths = [len(t) for t in encoded.tokens]
|
32 |
+
avg_length = np.mean(token_lengths) if token_lengths else 0
|
33 |
+
|
34 |
+
# Έλεγχος code coverage
|
35 |
+
code_symbols = ['{', '}', '(', ')', ';', '//', 'printf']
|
36 |
+
code_coverage = {sym: sym in test_text and sym in encoded.tokens for sym in code_symbols}
|
37 |
+
|
38 |
+
# Δημιουργία histogram
|
39 |
+
fig = plt.figure()
|
40 |
+
plt.hist(token_lengths, bins=20)
|
41 |
+
plt.xlabel('Token Length')
|
42 |
+
plt.ylabel('Frequency')
|
43 |
+
img_buffer = BytesIO()
|
44 |
+
plt.savefig(img_buffer, format='png')
|
45 |
+
plt.close()
|
46 |
+
|
47 |
+
return {
|
48 |
+
"roundtrip_success": test_text == decoded,
|
49 |
+
"unknown_tokens": f"{unknown_tokens} ({unknown_percent:.2f}%)",
|
50 |
+
"average_token_length": f"{avg_length:.2f}",
|
51 |
+
"code_coverage": code_coverage,
|
52 |
+
"token_length_distribution": img_buffer.getvalue()
|
53 |
+
}
|
54 |
+
|
55 |
+
def train_and_test(files, dataset_name, split, vocab_size, min_freq, test_text):
|
56 |
+
# Επιβεβαίωση εισόδων
|
57 |
+
if not files and not dataset_name:
|
58 |
+
raise gr.Error("Πρέπει να παρέχετε αρχεία ή όνομα dataset!")
|
59 |
+
|
60 |
+
# Δημιουργία iterator με streaming
|
61 |
+
iterator = create_iterator(files, dataset_name, split)
|
62 |
+
|
63 |
+
try:
|
64 |
+
tokenizer = train_tokenizer(iterator, vocab_size, min_freq)
|
65 |
+
except Exception as e:
|
66 |
+
raise gr.Error(f"Σφάλμα εκπαίδευσης: {str(e)}")
|
67 |
+
|
68 |
+
# Αποθήκευση και φόρτωση για validation
|
69 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".json") as f:
|
70 |
+
tokenizer.save(f.name)
|
71 |
+
trained_tokenizer = Tokenizer.from_file(f.name)
|
72 |
+
os.unlink(f.name)
|
73 |
+
|
74 |
+
# Εκτενής επικύρωση
|
75 |
+
validation = enhanced_validation(trained_tokenizer, test_text)
|
76 |
+
|
77 |
+
return {
|
78 |
+
"validation_metrics": {k:v for k,v in validation.items() if k != "token_length_distribution"},
|
79 |
+
"histogram": validation["token_length_distribution"]
|
80 |
+
}
|
81 |
+
|
82 |
+
# Gradio Interface
|
83 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
84 |
+
gr.Markdown("## Προχωρημένος BPE Tokenizer Trainer")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column():
|
88 |
+
with gr.Tab("Local Files"):
|
89 |
+
file_input = gr.File(file_count="multiple", label="Ανέβασμα αρχείων")
|
90 |
+
with gr.Tab("Hugging Face Dataset"):
|
91 |
+
dataset_name = gr.Textbox(label="Όνομα Dataset (π.χ. 'wikitext', 'codeparrot/github-code')")
|
92 |
+
split = gr.Textbox(value="train", label="Split")
|
93 |
+
|
94 |
+
vocab_size = gr.Slider(1000, 100000, value=32000, label="Μέγεθος Λεξιλογίου")
|
95 |
+
min_freq = gr.Slider(1, 100, value=2, label="Ελάχιστη Συχνότητα")
|
96 |
+
test_text = gr.Textbox(
|
97 |
+
value='function helloWorld() { console.log("Γειά σου Κόσμε!"); } // Ελληνικά + κώδικας',
|
98 |
+
label="Test Text"
|
99 |
+
)
|
100 |
+
train_btn = gr.Button("Εκπαίδευση Tokenizer", variant="primary")
|
101 |
+
|
102 |
+
with gr.Column():
|
103 |
+
results_json = gr.JSON(label="Μετρικές")
|
104 |
+
results_plot = gr.Image(label="Κατανομή Μηκών Tokens")
|
105 |
+
|
106 |
+
train_btn.click(
|
107 |
+
fn=train_and_test,
|
108 |
+
inputs=[file_input, dataset_name, split, vocab_size, min_freq, test_text],
|
109 |
+
outputs=[results_json, results_plot]
|
110 |
+
)
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
demo.launch()
|