FluentQ / app.py
tommytracx's picture
Update app.py
c6552d6 verified
raw
history blame
8.54 kB
import gradio as gr
import fastapi
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse, FileResponse
from fastapi import FastAPI, Request, Form, UploadFile, File
import os
import time
import logging
import json
import shutil
import uvicorn
from pathlib import Path
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create the FastAPI app
app = FastAPI(title="AGI Telecom POC")
# Create static directory if it doesn't exist
static_dir = Path("static")
static_dir.mkdir(exist_ok=True)
# Copy index.html from templates to static if it doesn't exist
html_template = Path("templates/index.html")
static_html = static_dir / "index.html"
if html_template.exists() and not static_html.exists():
shutil.copy(html_template, static_html)
# Mount static files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Mock data and functions to simulate the real implementation
SESSIONS = {}
def generate_session_id():
"""Generate a unique session ID."""
import uuid
return str(uuid.uuid4())
def mock_transcribe(audio_bytes):
"""Mock function to simulate speech-to-text."""
# In production, this would use Whisper
logger.info("Transcribing audio...")
time.sleep(1) # Simulate processing time
return "This is a mock transcription of the audio."
def mock_agent_response(text, session_id="default"):
"""Mock function to simulate agent reasoning."""
# In production, this would use a real LLM
logger.info(f"Processing query: {text}")
time.sleep(1.5) # Simulate processing time
# Simple keyword-based responses
if "5g" in text.lower():
return "5G is the fifth generation of cellular networks, offering higher speeds, lower latency, and more capacity than previous generations."
elif "telecom" in text.lower():
return "Telecommunications (telecom) refers to the exchange of information over significant distances by electronic means."
elif "webrtc" in text.lower():
return "WebRTC (Web Real-Time Communication) is a free, open-source project that enables web browsers and mobile applications to have real-time communication via simple APIs."
else:
return "I'm an AI assistant specialized in telecom topics. Feel free to ask me about 5G, network technologies, or telecommunications in general."
def mock_synthesize_speech(text):
"""Mock function to simulate text-to-speech."""
# In production, this would use a real TTS engine
logger.info("Synthesizing speech...")
time.sleep(0.5) # Simulate processing time
# Create a dummy audio file
import numpy as np
from scipy.io.wavfile import write
sample_rate = 22050
duration = 2 # seconds
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
audio = np.sin(2 * np.pi * 440 * t) * 0.3
output_file = "temp_audio.wav"
write(output_file, sample_rate, audio.astype(np.float32))
with open(output_file, "rb") as f:
audio_bytes = f.read()
# Clean up
os.remove(output_file)
return audio_bytes
# Routes for the API
@app.get("/", response_class=HTMLResponse)
async def root():
"""Serve the main UI."""
return FileResponse("static/index.html")
@app.post("/api/transcribe")
async def transcribe(file: UploadFile = File(...)):
"""Transcribe audio to text."""
try:
audio_bytes = await file.read()
text = mock_transcribe(audio_bytes)
return {"transcription": text}
except Exception as e:
logger.error(f"Transcription error: {str(e)}")
return {"error": f"Failed to transcribe audio: {str(e)}"}
@app.post("/api/query")
async def query_agent(input_text: str = Form(...), session_id: str = Form("default")):
"""Process a text query with the agent."""
try:
response = mock_agent_response(input_text, session_id)
return {"response": response}
except Exception as e:
logger.error(f"Query error: {str(e)}")
return {"error": f"Failed to process query: {str(e)}"}
@app.post("/api/speak")
async def speak(text: str = Form(...)):
"""Convert text to speech."""
try:
audio_bytes = mock_synthesize_speech(text)
return FileResponse(
"temp_audio.wav",
media_type="audio/wav",
filename="response.wav"
)
except Exception as e:
logger.error(f"Speech synthesis error: {str(e)}")
return {"error": f"Failed to synthesize speech: {str(e)}"}
@app.post("/api/session")
async def create_session():
"""Create a new session."""
session_id = generate_session_id()
SESSIONS[session_id] = {"created_at": time.time()}
return {"session_id": session_id}
# Gradio interface
with gr.Blocks(title="AGI Telecom POC", css="footer {visibility: hidden}") as interface:
gr.Markdown("# AGI Telecom POC Demo")
gr.Markdown("This is a demonstration of the AGI Telecom Proof of Concept. The full interface is available via the direct API.")
with gr.Row():
with gr.Column():
# Input components
audio_input = gr.Audio(label="Voice Input", type="filepath")
text_input = gr.Textbox(label="Text Input", placeholder="Type your message here...", lines=2)
# Session management
session_id = gr.Textbox(label="Session ID", value="default")
new_session_btn = gr.Button("New Session")
# Action buttons
with gr.Row():
transcribe_btn = gr.Button("Transcribe Audio")
query_btn = gr.Button("Send Query")
speak_btn = gr.Button("Speak Response")
with gr.Column():
# Output components
transcription_output = gr.Textbox(label="Transcription", lines=2)
response_output = gr.Textbox(label="Agent Response", lines=5)
audio_output = gr.Audio(label="Voice Response", autoplay=True)
# Status and info
status_output = gr.Textbox(label="Status", value="Ready")
# Link components with functions
def update_session():
new_id = generate_session_id()
status = f"Created new session: {new_id}"
return new_id, status
new_session_btn.click(
update_session,
outputs=[session_id, status_output]
)
def process_audio(audio_path, session):
if not audio_path:
return "No audio provided", "", None, "Error: No audio input"
try:
with open(audio_path, "rb") as f:
audio_bytes = f.read()
# Transcribe
text = mock_transcribe(audio_bytes)
# Get response
response = mock_agent_response(text, session)
# Synthesize
audio_bytes = mock_synthesize_speech(response)
temp_file = "temp_response.wav"
with open(temp_file, "wb") as f:
f.write(audio_bytes)
return text, response, temp_file, "Processed successfully"
except Exception as e:
logger.error(f"Error: {str(e)}")
return "", "", None, f"Error: {str(e)}"
transcribe_btn.click(
lambda audio_path: mock_transcribe(open(audio_path, "rb").read()) if audio_path else "No audio provided",
inputs=[audio_input],
outputs=[transcription_output]
)
query_btn.click(
lambda text, session: mock_agent_response(text, session),
inputs=[text_input, session_id],
outputs=[response_output]
)
speak_btn.click(
lambda text: "temp_response.wav" if mock_synthesize_speech(text) else None,
inputs=[response_output],
outputs=[audio_output]
)
# Full process
audio_input.change(
process_audio,
inputs=[audio_input, session_id],
outputs=[transcription_output, response_output, audio_output, status_output]
)
# Mount Gradio app
app = gr.mount_gradio_app(app, interface, path="/gradio")
# Run the app
if __name__ == "__main__":
# Check if running on HF Spaces
if os.environ.get("SPACE_ID"):
# Running on HF Spaces - use their port
port = int(os.environ.get("PORT", 7860))
uvicorn.run(app, host="0.0.0.0", port=port)
else:
# Running locally
uvicorn.run(app, host="0.0.0.0", port=8000)