File size: 8,535 Bytes
6a500ca
c6552d6
6a500ca
c6552d6
 
 
 
 
 
 
 
 
6a500ca
c6552d6
 
 
6a500ca
c6552d6
 
6a500ca
c6552d6
 
 
6a500ca
c6552d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a500ca
c6552d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import gradio as gr
import fastapi
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse, FileResponse
from fastapi import FastAPI, Request, Form, UploadFile, File
import os
import time
import logging
import json
import shutil
import uvicorn
from pathlib import Path

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Create the FastAPI app
app = FastAPI(title="AGI Telecom POC")

# Create static directory if it doesn't exist
static_dir = Path("static")
static_dir.mkdir(exist_ok=True)

# Copy index.html from templates to static if it doesn't exist
html_template = Path("templates/index.html")
static_html = static_dir / "index.html"
if html_template.exists() and not static_html.exists():
    shutil.copy(html_template, static_html)

# Mount static files
app.mount("/static", StaticFiles(directory="static"), name="static")

# Mock data and functions to simulate the real implementation
SESSIONS = {}

def generate_session_id():
    """Generate a unique session ID."""
    import uuid
    return str(uuid.uuid4())

def mock_transcribe(audio_bytes):
    """Mock function to simulate speech-to-text."""
    # In production, this would use Whisper
    logger.info("Transcribing audio...")
    time.sleep(1)  # Simulate processing time
    return "This is a mock transcription of the audio."

def mock_agent_response(text, session_id="default"):
    """Mock function to simulate agent reasoning."""
    # In production, this would use a real LLM
    logger.info(f"Processing query: {text}")
    time.sleep(1.5)  # Simulate processing time
    
    # Simple keyword-based responses
    if "5g" in text.lower():
        return "5G is the fifth generation of cellular networks, offering higher speeds, lower latency, and more capacity than previous generations."
    elif "telecom" in text.lower():
        return "Telecommunications (telecom) refers to the exchange of information over significant distances by electronic means."
    elif "webrtc" in text.lower():
        return "WebRTC (Web Real-Time Communication) is a free, open-source project that enables web browsers and mobile applications to have real-time communication via simple APIs."
    else:
        return "I'm an AI assistant specialized in telecom topics. Feel free to ask me about 5G, network technologies, or telecommunications in general."

def mock_synthesize_speech(text):
    """Mock function to simulate text-to-speech."""
    # In production, this would use a real TTS engine
    logger.info("Synthesizing speech...")
    time.sleep(0.5)  # Simulate processing time
    
    # Create a dummy audio file
    import numpy as np
    from scipy.io.wavfile import write
    
    sample_rate = 22050
    duration = 2  # seconds
    t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
    audio = np.sin(2 * np.pi * 440 * t) * 0.3
    
    output_file = "temp_audio.wav"
    write(output_file, sample_rate, audio.astype(np.float32))
    
    with open(output_file, "rb") as f:
        audio_bytes = f.read()
    
    # Clean up
    os.remove(output_file)
    
    return audio_bytes

# Routes for the API
@app.get("/", response_class=HTMLResponse)
async def root():
    """Serve the main UI."""
    return FileResponse("static/index.html")

@app.post("/api/transcribe")
async def transcribe(file: UploadFile = File(...)):
    """Transcribe audio to text."""
    try:
        audio_bytes = await file.read()
        text = mock_transcribe(audio_bytes)
        return {"transcription": text}
    except Exception as e:
        logger.error(f"Transcription error: {str(e)}")
        return {"error": f"Failed to transcribe audio: {str(e)}"}

@app.post("/api/query")
async def query_agent(input_text: str = Form(...), session_id: str = Form("default")):
    """Process a text query with the agent."""
    try:
        response = mock_agent_response(input_text, session_id)
        return {"response": response}
    except Exception as e:
        logger.error(f"Query error: {str(e)}")
        return {"error": f"Failed to process query: {str(e)}"}

@app.post("/api/speak")
async def speak(text: str = Form(...)):
    """Convert text to speech."""
    try:
        audio_bytes = mock_synthesize_speech(text)
        return FileResponse(
            "temp_audio.wav",
            media_type="audio/wav",
            filename="response.wav"
        )
    except Exception as e:
        logger.error(f"Speech synthesis error: {str(e)}")
        return {"error": f"Failed to synthesize speech: {str(e)}"}

@app.post("/api/session")
async def create_session():
    """Create a new session."""
    session_id = generate_session_id()
    SESSIONS[session_id] = {"created_at": time.time()}
    return {"session_id": session_id}

# Gradio interface
with gr.Blocks(title="AGI Telecom POC", css="footer {visibility: hidden}") as interface:
    gr.Markdown("# AGI Telecom POC Demo")
    gr.Markdown("This is a demonstration of the AGI Telecom Proof of Concept. The full interface is available via the direct API.")
    
    with gr.Row():
        with gr.Column():
            # Input components
            audio_input = gr.Audio(label="Voice Input", type="filepath")
            text_input = gr.Textbox(label="Text Input", placeholder="Type your message here...", lines=2)
            
            # Session management
            session_id = gr.Textbox(label="Session ID", value="default")
            new_session_btn = gr.Button("New Session")
            
            # Action buttons
            with gr.Row():
                transcribe_btn = gr.Button("Transcribe Audio")
                query_btn = gr.Button("Send Query")
                speak_btn = gr.Button("Speak Response")
        
        with gr.Column():
            # Output components
            transcription_output = gr.Textbox(label="Transcription", lines=2)
            response_output = gr.Textbox(label="Agent Response", lines=5)
            audio_output = gr.Audio(label="Voice Response", autoplay=True)
            
            # Status and info
            status_output = gr.Textbox(label="Status", value="Ready")
    
    # Link components with functions
    def update_session():
        new_id = generate_session_id()
        status = f"Created new session: {new_id}"
        return new_id, status
    
    new_session_btn.click(
        update_session,
        outputs=[session_id, status_output]
    )
    
    def process_audio(audio_path, session):
        if not audio_path:
            return "No audio provided", "", None, "Error: No audio input"
        
        try:
            with open(audio_path, "rb") as f:
                audio_bytes = f.read()
            
            # Transcribe
            text = mock_transcribe(audio_bytes)
            
            # Get response
            response = mock_agent_response(text, session)
            
            # Synthesize
            audio_bytes = mock_synthesize_speech(response)
            
            temp_file = "temp_response.wav"
            with open(temp_file, "wb") as f:
                f.write(audio_bytes)
            
            return text, response, temp_file, "Processed successfully"
        except Exception as e:
            logger.error(f"Error: {str(e)}")
            return "", "", None, f"Error: {str(e)}"
    
    transcribe_btn.click(
        lambda audio_path: mock_transcribe(open(audio_path, "rb").read()) if audio_path else "No audio provided",
        inputs=[audio_input],
        outputs=[transcription_output]
    )
    
    query_btn.click(
        lambda text, session: mock_agent_response(text, session),
        inputs=[text_input, session_id],
        outputs=[response_output]
    )
    
    speak_btn.click(
        lambda text: "temp_response.wav" if mock_synthesize_speech(text) else None,
        inputs=[response_output],
        outputs=[audio_output]
    )
    
    # Full process
    audio_input.change(
        process_audio,
        inputs=[audio_input, session_id],
        outputs=[transcription_output, response_output, audio_output, status_output]
    )

# Mount Gradio app
app = gr.mount_gradio_app(app, interface, path="/gradio")

# Run the app
if __name__ == "__main__":
    # Check if running on HF Spaces
    if os.environ.get("SPACE_ID"):
        # Running on HF Spaces - use their port
        port = int(os.environ.get("PORT", 7860))
        uvicorn.run(app, host="0.0.0.0", port=port)
    else:
        # Running locally
        uvicorn.run(app, host="0.0.0.0", port=8000)