|
|
|
from pinecone_text.sparse import SpladeEncoder
|
|
import re
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer
|
|
import logging
|
|
|
|
class EmbeddingModels:
|
|
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
|
|
self.device = device
|
|
logging.info(f'Using Device {self.device}')
|
|
self.sparse_model = SpladeEncoder(device=self.device)
|
|
self.img_model_ID = "openai/clip-vit-large-patch14"
|
|
self.img_model, self.img_processor, self.img_tokenizer = self.get_image_model_info(self.img_model_ID)
|
|
logging.info("Model Loaded")
|
|
|
|
def get_image_model_info(self, model_ID):
|
|
model = CLIPModel.from_pretrained(model_ID).to(self.device)
|
|
processor = CLIPProcessor.from_pretrained(model_ID)
|
|
tokenizer = CLIPTokenizer.from_pretrained(model_ID)
|
|
return model, processor, tokenizer
|
|
|
|
def get_single_image_embedding(self, my_image):
|
|
image = self.img_processor(
|
|
text=None,
|
|
images=my_image,
|
|
return_tensors="pt"
|
|
)["pixel_values"].to(self.device)
|
|
|
|
embedding = self.img_model.get_image_features(image)
|
|
logging.info("Embeddings Created")
|
|
embeddings = F.normalize(embedding, p=2, dim=1)
|
|
logging.info("Embeddings Normalized")
|
|
values = embeddings[0].tolist()
|
|
return values
|
|
|
|
def preprocessing_patent_data(self,text):
|
|
|
|
pattern0 = r'\b(SUBSTITUTE SHEET RULE 2 SUMMARY OF THE INVENTION|BRIEF DESCRIPTION OF PREFERRED EMBODIMENTS|BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES|BEST MODE FOR CARRYING OUT THE INVENTION|BACKGROUND AND SUMMARY OF THE INVENTION|FIELD AND BACKGROUND OF THE INVENTION|BACKGROUND OF THE PRESENT INVENTION|FIELD AND BACKGROUND OF INVENTION|STAND DER TECHNIK- BACKGROUND ART|BRIEF DESCRIPTION OF THE DRAWINGS|DESCRIPTION OF THE RELATED ART|BRIEF SUMMARY OF THE INVENTION|UTILITY MODEL CLAIMS A CONTENT|DESCRIPTION OF BACKGROUND ART|BRIEF DESCRIPTION OF DRAWINGS|BACKGROUND OF THE INVENTION|BACKGROUND TO THE INVENTION|TÉCNICA ANTERIOR- PRIOR ART|DISCLOSURE OF THE INVENTION|BRIEF SUMMARY OF INVENTION|BACKGROUND OF RELATED ART|SUMMARY OF THE DISCLOSURE|SUMMARY OF THE INVENTIONS|SUMMARY OF THE INVENTION|OBJECTS OF THE INVENTION|THE CONTENT OF INVENTION|DISCLOSURE OF INVENTION|Disclosure of Invention|Complete Specification|RELATED BACKGROUND ART|BACKGROUND INFORMATION|BACKGROUND TECHNOLOGY|DETAILED DESCRIPTION|SUMMARY OF INVENTION|DETAILED DESCRIPTION|PROBLEM TO BE SOLVED|EFFECT OF INVENTION|WHAT IS CLAIMED IS|What is claimed is|What is Claim is|SUBSTITUTE SHEET|SELECTED DRAWING|BACK GROUND ART|BACKGROUND ART|Background Art|JPO&INPIT|CONSTITUTION|DEFINITIONS|Related Art|BACKGROUND|JPO&INPIT|JPO&NCIPI|COPYRIGHT|SOLUTION|SUMMARY)\b'
|
|
text = re.sub(pattern0, '[SEP]', text, flags=re.IGNORECASE)
|
|
text = ' '.join(text.split())
|
|
|
|
regex = r'<\s*heading[^>]*>(.*?)<\s*/\s*heading>|<[^<]+>|id=\"p-\d+\"|:'
|
|
result = re.sub(regex, '[SEP]', text, flags=re.IGNORECASE)
|
|
|
|
chemical_list = []
|
|
pattern1 = r'\b((?:(?:H|He|Li|Be|B|C|N|O|F|Ne|Na|Mg|Al|Si|P|S|Cl|Ar|K|Ca|Sc|Ti|V|Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr|Rb|Sr|Y|Zr|Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In|Sn|Sb|Te|I|Xe|Cs|Ba|La|Hf|Ta|W|Re|Os|Ir|Pt|Au|Hg|Tl|Pb|Bi|Po|At|Rn|Fr|Ra|Ac|Rf|Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn|Nh|Fl|Mc|Lv|Ts|Og|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho|Er|Tm|Yb|Lu|Th|Pa|U|Np|Pu|Am|Cm|Bk|Cf|Es|Fm|Md|No|Lr)\d*)+)\b'
|
|
|
|
formula_names = re.findall(pattern1, result)
|
|
for formula in formula_names:
|
|
if len(formula)>=2:
|
|
chemical_list.append(formula)
|
|
|
|
|
|
|
|
pattern2 = r"\((?![A-Za-z]+\))[\w\d\s,-]+\)|\([A-Za-z]\)"
|
|
def keep_strings(text):
|
|
matched = text.group(0)
|
|
if any(item in matched for item in chemical_list):
|
|
return matched
|
|
return ' '
|
|
cleaned_text = re.sub(pattern2, keep_strings, result)
|
|
cleaned_text = ' '.join(cleaned_text.split())
|
|
cleaned_text= re.sub("(\[SEP\]+\s*)+", ' ', cleaned_text, flags=re.IGNORECASE)
|
|
|
|
p_text2=re.sub('[\—\-\═\=]', ' ', cleaned_text)
|
|
pattern1 = r'\b((?:(?:H|He|Li|Be|B|C|N|O|F|Ne|Na|Mg|Al|Si|P|S|Cl|Ar|K|Ca|Sc|Ti|V|Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr|Rb|Sr|Y|Zr|Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In|Sn|Sb|Te|I|Xe|Cs|Ba|La|Hf|Ta|W|Re|Os|Ir|Pt|Au|Hg|Tl|Pb|Bi|Po|At|Rn|Fr|Ra|Ac|Rf|Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn|Nh|Fl|Mc|Lv|Ts|Og|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho|Er|Tm|Yb|Lu|Th|Pa|U|Np|Pu|Am|Cm|Bk|Cf|Es|Fm|Md|No|Lr)\d*)+)\b'
|
|
cleaned_text = re.sub(pattern1, "", p_text2)
|
|
cleaned_text = re.sub(' ,+|, +', ' ', cleaned_text)
|
|
cleaned_text = re.sub(' +', ' ', cleaned_text)
|
|
cleaned_text = re.sub('\.+', '.', cleaned_text)
|
|
cleaned_text = re.sub('[0-9] [0-9] +', ' ', cleaned_text)
|
|
cleaned_text = re.sub('( )', ' ', cleaned_text)
|
|
cleaned_text=cleaned_text.strip()
|
|
return cleaned_text
|
|
|
|
def get_single_sparse_text_embedding(self, df_chunk):
|
|
df_chunk = self.preprocessing_patent_data(df_chunk)
|
|
txt_sp = self.sparse_model.encode_documents(df_chunk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return txt_sp
|
|
|
|
def normalize_sparse_vector_values(self,sparse_vector):
|
|
"""
|
|
Normalize the values of a sparse vector to a 0-1 range using min-max scaling,
|
|
considering a known range of sparse scores.
|
|
Args:
|
|
sparse_vector: A dict representing a sparse vector with 'indices' and 'values'
|
|
min_score: The minimum score in the range of sparse scores (default is 0)
|
|
max_score: The maximum score in the range of sparse scores (default is 6000)
|
|
Returns:
|
|
A dict representing the sparse vector with normalized 'values'.
|
|
"""
|
|
|
|
self.tensor = torch.tensor(sparse_vector['values'])
|
|
self.normalized_tensor = F.normalize(self.tensor, p=2.0, dim=0, eps=1e-12)
|
|
values = self.normalized_tensor.tolist()
|
|
|
|
|
|
self.normalized_sparse_vector = {
|
|
'indices': sparse_vector['indices'],
|
|
'values': values
|
|
}
|
|
return self.normalized_sparse_vector
|
|
|
|
|