Upload 5 files
Browse files- Dockerfile +20 -0
- app.py +73 -0
- process_img.py +48 -0
- requirements.txt +6 -0
- vector_emb.py +115 -0
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY . /app
|
6 |
+
|
7 |
+
RUN pip3 install fastapi uvicorn transformers==4.42.3 pillow protobuf==4.25.3 fastapi-health pinecone_text
|
8 |
+
|
9 |
+
RUN useradd -m -u 1000 user
|
10 |
+
|
11 |
+
USER user
|
12 |
+
|
13 |
+
ENV HOME=/home/user \
|
14 |
+
PATH=/home/user/.local/bin:$PATH
|
15 |
+
|
16 |
+
WORKDIR $HOME/app
|
17 |
+
|
18 |
+
COPY --chown=user . $HOME/app
|
19 |
+
|
20 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Depends, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from fastapi_health import health
|
4 |
+
from PIL import Image
|
5 |
+
import logging
|
6 |
+
import sys
|
7 |
+
from io import BytesIO
|
8 |
+
import base64
|
9 |
+
|
10 |
+
from process_img import Image_Processor
|
11 |
+
from vector_emb import EmbeddingModels
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
logging.basicConfig(
|
16 |
+
level=logging.getLevelName("INFO"),
|
17 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
18 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
19 |
+
logging.info('Logging module started')
|
20 |
+
|
21 |
+
def get_session():
|
22 |
+
return True
|
23 |
+
|
24 |
+
def is_database_online(session: bool = Depends(get_session)):
|
25 |
+
return session
|
26 |
+
|
27 |
+
app = FastAPI()
|
28 |
+
app.add_api_route("/healthz", health([is_database_online]))
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
model = EmbeddingModels()
|
33 |
+
img_Processor = Image_Processor()
|
34 |
+
|
35 |
+
class ImageBase64(BaseModel):
|
36 |
+
base64_string: str
|
37 |
+
|
38 |
+
class TextInput(BaseModel):
|
39 |
+
text: str
|
40 |
+
|
41 |
+
@app.post("/design-dense/")
|
42 |
+
async def embed_image(data: ImageBase64):
|
43 |
+
base64_string = data.base64_string
|
44 |
+
image_data = base64.b64decode(base64_string)
|
45 |
+
image = Image.open(BytesIO(image_data))
|
46 |
+
final_image = img_Processor.get_processed_img(image)
|
47 |
+
embeddings = model.get_single_image_embedding(final_image)
|
48 |
+
return embeddings
|
49 |
+
|
50 |
+
|
51 |
+
@app.post("/sparse/")
|
52 |
+
async def embed_text(item: TextInput):
|
53 |
+
try:
|
54 |
+
logging.info(f'Received text for embedding: {item.text}')
|
55 |
+
embeddings = model.get_single_sparse_text_embedding(item.text)
|
56 |
+
logging.info('Embedding process completed')
|
57 |
+
return embeddings
|
58 |
+
except Exception as e:
|
59 |
+
logging.error(f'Error during embedding process: {e}')
|
60 |
+
raise HTTPException(status_code=500, detail=str(e))
|
61 |
+
|
62 |
+
|
63 |
+
@app.post("/design-sparse/")
|
64 |
+
async def embed_text(item: TextInput):
|
65 |
+
try:
|
66 |
+
logging.info(f'Received text for embedding: {item.text}')
|
67 |
+
embeddings = model.get_single_sparse_text_embedding(item.text)
|
68 |
+
embeddings = model.normalize_sparse_vector_values(embeddings)
|
69 |
+
logging.info('Embedding process completed')
|
70 |
+
return embeddings
|
71 |
+
except Exception as e:
|
72 |
+
logging.error(f'Error during embedding process: {e}')
|
73 |
+
raise HTTPException(status_code=500, detail=str(e))
|
process_img.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image, ImageOps
|
3 |
+
import logging
|
4 |
+
|
5 |
+
class Image_Processor:
|
6 |
+
def __init__(self):
|
7 |
+
pass
|
8 |
+
def is_image_white_by_percentage(self,image_path, white_threshold):
|
9 |
+
image = image_path.convert('RGB')
|
10 |
+
image_np = np.array(image)
|
11 |
+
white_pixel = np.array([255, 255, 255])
|
12 |
+
white_pixels_count = np.sum(np.all(image_np == white_pixel, axis=-1))
|
13 |
+
total_pixels = image_np.shape[0] * image_np.shape[1]
|
14 |
+
white_pixel_percentage = (white_pixels_count / total_pixels) * 100
|
15 |
+
return white_pixel_percentage > white_threshold
|
16 |
+
|
17 |
+
def padding_white(self,image, output_size=(224, 224)):
|
18 |
+
# Ensure image is in RGB mode before padding
|
19 |
+
if image.mode != 'RGB':
|
20 |
+
image = image.convert('RGB')
|
21 |
+
new_image = ImageOps.pad(image, output_size, method=Image.Resampling.LANCZOS, color=(255, 255, 255))
|
22 |
+
return new_image
|
23 |
+
|
24 |
+
def resize_image_with_aspect_ratio(self,img):
|
25 |
+
target_size=224
|
26 |
+
width, height = img.size
|
27 |
+
original_aspect_ratio = width / height
|
28 |
+
if width > height:
|
29 |
+
new_width = target_size
|
30 |
+
new_height = int(target_size / original_aspect_ratio)
|
31 |
+
else:
|
32 |
+
new_height = target_size
|
33 |
+
new_width = int(target_size * original_aspect_ratio)
|
34 |
+
resized_img = img.resize((new_width, new_height))
|
35 |
+
return resized_img
|
36 |
+
|
37 |
+
def get_processed_img(self,image):
|
38 |
+
white_thresh = self.is_image_white_by_percentage(image,50)
|
39 |
+
if white_thresh == True:
|
40 |
+
resized_image = self.resize_image_with_aspect_ratio(image)
|
41 |
+
final_image = self.padding_white(resized_image)
|
42 |
+
logging.info('Resized and Padded Image')
|
43 |
+
else:
|
44 |
+
final_image = self.resize_image_with_aspect_ratio(image)
|
45 |
+
logging.info('Resized Image')
|
46 |
+
|
47 |
+
final_image = final_image.convert('L') if final_image.mode != 'L' else final_image
|
48 |
+
return final_image
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
pillow
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
fastapi-health
|
vector_emb.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from pinecone_text.sparse import SpladeEncoder
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer
|
7 |
+
import logging
|
8 |
+
|
9 |
+
class EmbeddingModels:
|
10 |
+
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
|
11 |
+
self.device = device
|
12 |
+
logging.info(f'Using Device {self.device}')
|
13 |
+
self.sparse_model = SpladeEncoder(device=self.device)
|
14 |
+
self.img_model_ID = "openai/clip-vit-large-patch14"
|
15 |
+
self.img_model, self.img_processor, self.img_tokenizer = self.get_image_model_info(self.img_model_ID)
|
16 |
+
logging.info("Model Loaded")
|
17 |
+
|
18 |
+
def get_image_model_info(self, model_ID):
|
19 |
+
model = CLIPModel.from_pretrained(model_ID).to(self.device)
|
20 |
+
processor = CLIPProcessor.from_pretrained(model_ID)
|
21 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_ID)
|
22 |
+
return model, processor, tokenizer
|
23 |
+
|
24 |
+
def get_single_image_embedding(self, my_image):
|
25 |
+
image = self.img_processor(
|
26 |
+
text=None,
|
27 |
+
images=my_image,
|
28 |
+
return_tensors="pt"
|
29 |
+
)["pixel_values"].to(self.device)
|
30 |
+
|
31 |
+
embedding = self.img_model.get_image_features(image)
|
32 |
+
logging.info("Embeddings Created")
|
33 |
+
embeddings = F.normalize(embedding, p=2, dim=1)
|
34 |
+
logging.info("Embeddings Normalized")
|
35 |
+
values = embeddings[0].tolist()
|
36 |
+
return values
|
37 |
+
|
38 |
+
def preprocessing_patent_data(self,text):
|
39 |
+
# Removing Common tags in patent
|
40 |
+
pattern0 = r'\b(SUBSTITUTE SHEET RULE 2 SUMMARY OF THE INVENTION|BRIEF DESCRIPTION OF PREFERRED EMBODIMENTS|BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES|BEST MODE FOR CARRYING OUT THE INVENTION|BACKGROUND AND SUMMARY OF THE INVENTION|FIELD AND BACKGROUND OF THE INVENTION|BACKGROUND OF THE PRESENT INVENTION|FIELD AND BACKGROUND OF INVENTION|STAND DER TECHNIK- BACKGROUND ART|BRIEF DESCRIPTION OF THE DRAWINGS|DESCRIPTION OF THE RELATED ART|BRIEF SUMMARY OF THE INVENTION|UTILITY MODEL CLAIMS A CONTENT|DESCRIPTION OF BACKGROUND ART|BRIEF DESCRIPTION OF DRAWINGS|BACKGROUND OF THE INVENTION|BACKGROUND TO THE INVENTION|TÉCNICA ANTERIOR- PRIOR ART|DISCLOSURE OF THE INVENTION|BRIEF SUMMARY OF INVENTION|BACKGROUND OF RELATED ART|SUMMARY OF THE DISCLOSURE|SUMMARY OF THE INVENTIONS|SUMMARY OF THE INVENTION|OBJECTS OF THE INVENTION|THE CONTENT OF INVENTION|DISCLOSURE OF INVENTION|Disclosure of Invention|Complete Specification|RELATED BACKGROUND ART|BACKGROUND INFORMATION|BACKGROUND TECHNOLOGY|DETAILED DESCRIPTION|SUMMARY OF INVENTION|DETAILED DESCRIPTION|PROBLEM TO BE SOLVED|EFFECT OF INVENTION|WHAT IS CLAIMED IS|What is claimed is|What is Claim is|SUBSTITUTE SHEET|SELECTED DRAWING|BACK GROUND ART|BACKGROUND ART|Background Art|JPO&INPIT|CONSTITUTION|DEFINITIONS|Related Art|BACKGROUND|JPO&INPIT|JPO&NCIPI|COPYRIGHT|SOLUTION|SUMMARY)\b'
|
41 |
+
text = re.sub(pattern0, '[SEP]', text, flags=re.IGNORECASE)
|
42 |
+
text = ' '.join(text.split())
|
43 |
+
# Removing all tags between Heading to /Heading and id=
|
44 |
+
regex = r'<\s*heading[^>]*>(.*?)<\s*/\s*heading>|<[^<]+>|id=\"p-\d+\"|:'
|
45 |
+
result = re.sub(regex, '[SEP]', text, flags=re.IGNORECASE)
|
46 |
+
# find_formula_names from pat text to exclude it from below logic regex
|
47 |
+
chemical_list = []
|
48 |
+
pattern1 = r'\b((?:(?:H|He|Li|Be|B|C|N|O|F|Ne|Na|Mg|Al|Si|P|S|Cl|Ar|K|Ca|Sc|Ti|V|Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr|Rb|Sr|Y|Zr|Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In|Sn|Sb|Te|I|Xe|Cs|Ba|La|Hf|Ta|W|Re|Os|Ir|Pt|Au|Hg|Tl|Pb|Bi|Po|At|Rn|Fr|Ra|Ac|Rf|Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn|Nh|Fl|Mc|Lv|Ts|Og|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho|Er|Tm|Yb|Lu|Th|Pa|U|Np|Pu|Am|Cm|Bk|Cf|Es|Fm|Md|No|Lr)\d*)+)\b'
|
49 |
+
|
50 |
+
formula_names = re.findall(pattern1, result)
|
51 |
+
for formula in formula_names:
|
52 |
+
if len(formula)>=2:
|
53 |
+
chemical_list.append(formula)
|
54 |
+
# print("chemical_list:", chemical_list)
|
55 |
+
|
56 |
+
# Remove numbers and alphanum inside brackets excluding chemical forms
|
57 |
+
pattern2 = r"\((?![A-Za-z]+\))[\w\d\s,-]+\)|\([A-Za-z]\)"
|
58 |
+
def keep_strings(text):
|
59 |
+
matched = text.group(0)
|
60 |
+
if any(item in matched for item in chemical_list):
|
61 |
+
return matched
|
62 |
+
return ' '
|
63 |
+
cleaned_text = re.sub(pattern2, keep_strings, result)
|
64 |
+
cleaned_text = ' '.join(cleaned_text.split())
|
65 |
+
cleaned_text= re.sub("(\[SEP\]+\s*)+", ' ', cleaned_text, flags=re.IGNORECASE)
|
66 |
+
# below new logic to remove chemical compounds (eg.chemical- polymerizable compounds)
|
67 |
+
p_text2=re.sub('[\—\-\═\=]', ' ', cleaned_text)
|
68 |
+
pattern1 = r'\b((?:(?:H|He|Li|Be|B|C|N|O|F|Ne|Na|Mg|Al|Si|P|S|Cl|Ar|K|Ca|Sc|Ti|V|Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr|Rb|Sr|Y|Zr|Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In|Sn|Sb|Te|I|Xe|Cs|Ba|La|Hf|Ta|W|Re|Os|Ir|Pt|Au|Hg|Tl|Pb|Bi|Po|At|Rn|Fr|Ra|Ac|Rf|Db|Sg|Bh|Hs|Mt|Ds|Rg|Cn|Nh|Fl|Mc|Lv|Ts|Og|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho|Er|Tm|Yb|Lu|Th|Pa|U|Np|Pu|Am|Cm|Bk|Cf|Es|Fm|Md|No|Lr)\d*)+)\b'
|
69 |
+
cleaned_text = re.sub(pattern1, "", p_text2)
|
70 |
+
cleaned_text = re.sub(' ,+|, +', ' ', cleaned_text)
|
71 |
+
cleaned_text = re.sub(' +', ' ', cleaned_text)
|
72 |
+
cleaned_text = re.sub('\.+', '.', cleaned_text)
|
73 |
+
cleaned_text = re.sub('[0-9] [0-9] +', ' ', cleaned_text)
|
74 |
+
cleaned_text = re.sub('( )', ' ', cleaned_text)
|
75 |
+
cleaned_text=cleaned_text.strip()
|
76 |
+
return cleaned_text
|
77 |
+
|
78 |
+
def get_single_sparse_text_embedding(self, df_chunk):
|
79 |
+
df_chunk = self.preprocessing_patent_data(df_chunk)
|
80 |
+
txt_sp = self.sparse_model.encode_documents(df_chunk)
|
81 |
+
|
82 |
+
# tensor = torch.tensor(txt_sp['values'])
|
83 |
+
# normalized_tensor = F.normalize(tensor, p=2.0, dim=0, eps=1e-12)
|
84 |
+
# values = normalized_tensor.tolist()
|
85 |
+
|
86 |
+
# # Update the sparse_vector with normalized values
|
87 |
+
# normalized_sparse_vector = {
|
88 |
+
# 'indices': txt_sp['indices'],
|
89 |
+
# 'values': values
|
90 |
+
# }
|
91 |
+
return txt_sp
|
92 |
+
|
93 |
+
def normalize_sparse_vector_values(self,sparse_vector):
|
94 |
+
"""
|
95 |
+
Normalize the values of a sparse vector to a 0-1 range using min-max scaling,
|
96 |
+
considering a known range of sparse scores.
|
97 |
+
Args:
|
98 |
+
sparse_vector: A dict representing a sparse vector with 'indices' and 'values'
|
99 |
+
min_score: The minimum score in the range of sparse scores (default is 0)
|
100 |
+
max_score: The maximum score in the range of sparse scores (default is 6000)
|
101 |
+
Returns:
|
102 |
+
A dict representing the sparse vector with normalized 'values'.
|
103 |
+
"""
|
104 |
+
# normalized_values = [(value - min_score) / (max_score - min_score) for value in sparse_vector['values']]
|
105 |
+
self.tensor = torch.tensor(sparse_vector['values'])
|
106 |
+
self.normalized_tensor = F.normalize(self.tensor, p=2.0, dim=0, eps=1e-12)
|
107 |
+
values = self.normalized_tensor.tolist()
|
108 |
+
|
109 |
+
# Update the sparse_vector with normalized values
|
110 |
+
self.normalized_sparse_vector = {
|
111 |
+
'indices': sparse_vector['indices'],
|
112 |
+
'values': values
|
113 |
+
}
|
114 |
+
return self.normalized_sparse_vector
|
115 |
+
|