File size: 5,541 Bytes
44f0a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
import cv2
import numpy as np
from PIL import Image
import noise
import io
import base64
from pydantic import BaseModel

app = FastAPI(title="Advanced Material Map Generator API")

# Request model for input
class MapRequest(BaseModel):
    image_base64: str
    normal_strength: float = 1.0
    normal_blur: int = 5
    normal_bilateral: bool = False
    normal_color: float = 0.3
    disp_contrast: float = 1.0
    disp_noise: bool = False
    disp_noise_scale: float = 0.1
    disp_edge: float = 1.0
    rough_invert: bool = True
    rough_sharpness: float = 1.0
    rough_detail: float = 0.5
    rough_freq: float = 0.5

def generate_normal_map(image: np.ndarray, strength: float, blur_size: int, use_bilateral: bool, color_influence: float) -> Image.Image:
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    if use_bilateral:
        gray = cv2.bilateralFilter(gray, 9, 75, 75)
    else:
        gray = cv2.GaussianBlur(gray, (blur_size, blur_size), 0)
    
    levels = 3
    normal_map = np.zeros((gray.shape[0], gray.shape[1], 3), dtype=np.float32)
    for i in range(levels):
        scale = 1 / (2 ** i)
        resized = cv2.resize(gray, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
        sobel_x = cv2.Scharr(resized, cv2.CV_64F, 1, 0)
        sobel_y = cv2.Scharr(resized, cv2.CV_64F, 0, 1)
        sobel_x = cv2.resize(sobel_x, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_LINEAR)
        sobel_y = cv2.resize(sobel_y, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_LINEAR)
        normal_map[..., 0] += sobel_x * (1.0 / levels)
        normal_map[..., 1] += sobel_y * (1.0 / levels)
    
    normal_map[..., 0] = cv2.normalize(normal_map[..., 0], None, -strength, strength, cv2.NORM_MINMAX)
    normal_map[..., 1] = cv2.normalize(normal_map[..., 1], None, -strength, strength, cv2.NORM_MINMAX)
    normal_map[..., 2] = 1.0
    
    color_factor = color_influence * strength
    normal_map[..., 0] += (image[..., 0] / 255.0 - 0.5) * color_factor
    normal_map[..., 1] += (image[..., 1] / 255.0 - 0.5) * color_factor
    
    norm = np.linalg.norm(normal_map, axis=2, keepdims=True)
    normal_map = np.divide(normal_map, norm, out=np.zeros_like(normal_map), where=norm != 0)
    normal_map = (normal_map + 1) * 127.5
    normal_map = np.clip(normal_map, 0, 255).astype(np.uint8)
    return Image.fromarray(normal_map)

def generate_displacement_map(image: np.ndarray, contrast: float, add_noise: bool, noise_scale: float, edge_boost: float) -> Image.Image:
    img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    img = clahe.apply(img)
    img = cv2.convertScaleAbs(img, alpha=contrast, beta=0)
    laplacian = cv2.Laplacian(img, cv2.CV_64F)
    laplacian = cv2.convertScaleAbs(laplacian, alpha=edge_boost, beta=0)
    img = cv2.addWeighted(img, 1.0, laplacian, 0.5 * edge_boost, 0)
    if add_noise:
        height, width = img.shape
        noise_map = np.zeros((height, width), dtype=np.float32)
        for y in range(height):
            for x in range(width):
                noise_map[y, x] = noise.pnoise2(x / 50.0, y / 50.0, octaves=6) * noise_scale * 255
        img = cv2.add(img, noise_map.astype(np.uint8))
    return Image.fromarray(img)

def generate_roughness_map(image: np.ndarray, invert: bool, sharpness: float, detail_boost: float, frequency_weight: float) -> Image.Image:
    img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    low_freq = cv2.bilateralFilter(img, 9, 75, 75)
    high_freq = cv2.subtract(img, low_freq)
    img = cv2.addWeighted(low_freq, 1.0 - frequency_weight, high_freq, frequency_weight, 0)
    if invert:
        img = 255 - img
    blurred = cv2.GaussianBlur(img, (5, 5), 0)
    img = cv2.addWeighted(img, 1.0 + sharpness, blurred, -sharpness, 0)
    img = cv2.addWeighted(img, 1.0 + detail_boost, blurred, -detail_boost, 0)
    return Image.fromarray(img)

def image_to_base64(img: Image.Image) -> str:
    buffered = io.BytesIO()
    img.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode("utf-8")

@app.post("/generate_maps/")
async def generate_maps(request: MapRequest):
    try:
        # Decode base64 image
        image_bytes = base64.b64decode(request.image_base64)
        image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        img_array = np.array(image)

        # Generate maps
        normal_map = generate_normal_map(
            img_array, request.normal_strength, request.normal_blur, 
            request.normal_bilateral, request.normal_color
        )
        displacement_map = generate_displacement_map(
            img_array, request.disp_contrast, request.disp_noise, 
            request.disp_noise_scale, request.disp_edge
        )
        roughness_map = generate_roughness_map(
            img_array, request.rough_invert, request.rough_sharpness, 
            request.rough_detail, request.rough_freq
        )

        # Convert to base64
        normal_base64 = image_to_base64(normal_map)
        displacement_base64 = image_to_base64(displacement_map)
        roughness_base64 = image_to_base64(roughness_map)

        return JSONResponse(content={
            "status": "success",
            "normal_map": normal_base64,
            "displacement_map": displacement_base64,
            "roughness_map": roughness_base64
        })

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))