tejani commited on
Commit
44f0a86
·
verified ·
1 Parent(s): 34cbb83

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +131 -0
app.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from fastapi.responses import JSONResponse
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+ import noise
7
+ import io
8
+ import base64
9
+ from pydantic import BaseModel
10
+
11
+ app = FastAPI(title="Advanced Material Map Generator API")
12
+
13
+ # Request model for input
14
+ class MapRequest(BaseModel):
15
+ image_base64: str
16
+ normal_strength: float = 1.0
17
+ normal_blur: int = 5
18
+ normal_bilateral: bool = False
19
+ normal_color: float = 0.3
20
+ disp_contrast: float = 1.0
21
+ disp_noise: bool = False
22
+ disp_noise_scale: float = 0.1
23
+ disp_edge: float = 1.0
24
+ rough_invert: bool = True
25
+ rough_sharpness: float = 1.0
26
+ rough_detail: float = 0.5
27
+ rough_freq: float = 0.5
28
+
29
+ def generate_normal_map(image: np.ndarray, strength: float, blur_size: int, use_bilateral: bool, color_influence: float) -> Image.Image:
30
+ gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
31
+ if use_bilateral:
32
+ gray = cv2.bilateralFilter(gray, 9, 75, 75)
33
+ else:
34
+ gray = cv2.GaussianBlur(gray, (blur_size, blur_size), 0)
35
+
36
+ levels = 3
37
+ normal_map = np.zeros((gray.shape[0], gray.shape[1], 3), dtype=np.float32)
38
+ for i in range(levels):
39
+ scale = 1 / (2 ** i)
40
+ resized = cv2.resize(gray, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
41
+ sobel_x = cv2.Scharr(resized, cv2.CV_64F, 1, 0)
42
+ sobel_y = cv2.Scharr(resized, cv2.CV_64F, 0, 1)
43
+ sobel_x = cv2.resize(sobel_x, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_LINEAR)
44
+ sobel_y = cv2.resize(sobel_y, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_LINEAR)
45
+ normal_map[..., 0] += sobel_x * (1.0 / levels)
46
+ normal_map[..., 1] += sobel_y * (1.0 / levels)
47
+
48
+ normal_map[..., 0] = cv2.normalize(normal_map[..., 0], None, -strength, strength, cv2.NORM_MINMAX)
49
+ normal_map[..., 1] = cv2.normalize(normal_map[..., 1], None, -strength, strength, cv2.NORM_MINMAX)
50
+ normal_map[..., 2] = 1.0
51
+
52
+ color_factor = color_influence * strength
53
+ normal_map[..., 0] += (image[..., 0] / 255.0 - 0.5) * color_factor
54
+ normal_map[..., 1] += (image[..., 1] / 255.0 - 0.5) * color_factor
55
+
56
+ norm = np.linalg.norm(normal_map, axis=2, keepdims=True)
57
+ normal_map = np.divide(normal_map, norm, out=np.zeros_like(normal_map), where=norm != 0)
58
+ normal_map = (normal_map + 1) * 127.5
59
+ normal_map = np.clip(normal_map, 0, 255).astype(np.uint8)
60
+ return Image.fromarray(normal_map)
61
+
62
+ def generate_displacement_map(image: np.ndarray, contrast: float, add_noise: bool, noise_scale: float, edge_boost: float) -> Image.Image:
63
+ img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
64
+ clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
65
+ img = clahe.apply(img)
66
+ img = cv2.convertScaleAbs(img, alpha=contrast, beta=0)
67
+ laplacian = cv2.Laplacian(img, cv2.CV_64F)
68
+ laplacian = cv2.convertScaleAbs(laplacian, alpha=edge_boost, beta=0)
69
+ img = cv2.addWeighted(img, 1.0, laplacian, 0.5 * edge_boost, 0)
70
+ if add_noise:
71
+ height, width = img.shape
72
+ noise_map = np.zeros((height, width), dtype=np.float32)
73
+ for y in range(height):
74
+ for x in range(width):
75
+ noise_map[y, x] = noise.pnoise2(x / 50.0, y / 50.0, octaves=6) * noise_scale * 255
76
+ img = cv2.add(img, noise_map.astype(np.uint8))
77
+ return Image.fromarray(img)
78
+
79
+ def generate_roughness_map(image: np.ndarray, invert: bool, sharpness: float, detail_boost: float, frequency_weight: float) -> Image.Image:
80
+ img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
81
+ low_freq = cv2.bilateralFilter(img, 9, 75, 75)
82
+ high_freq = cv2.subtract(img, low_freq)
83
+ img = cv2.addWeighted(low_freq, 1.0 - frequency_weight, high_freq, frequency_weight, 0)
84
+ if invert:
85
+ img = 255 - img
86
+ blurred = cv2.GaussianBlur(img, (5, 5), 0)
87
+ img = cv2.addWeighted(img, 1.0 + sharpness, blurred, -sharpness, 0)
88
+ img = cv2.addWeighted(img, 1.0 + detail_boost, blurred, -detail_boost, 0)
89
+ return Image.fromarray(img)
90
+
91
+ def image_to_base64(img: Image.Image) -> str:
92
+ buffered = io.BytesIO()
93
+ img.save(buffered, format="PNG")
94
+ return base64.b64encode(buffered.getvalue()).decode("utf-8")
95
+
96
+ @app.post("/generate_maps/")
97
+ async def generate_maps(request: MapRequest):
98
+ try:
99
+ # Decode base64 image
100
+ image_bytes = base64.b64decode(request.image_base64)
101
+ image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
102
+ img_array = np.array(image)
103
+
104
+ # Generate maps
105
+ normal_map = generate_normal_map(
106
+ img_array, request.normal_strength, request.normal_blur,
107
+ request.normal_bilateral, request.normal_color
108
+ )
109
+ displacement_map = generate_displacement_map(
110
+ img_array, request.disp_contrast, request.disp_noise,
111
+ request.disp_noise_scale, request.disp_edge
112
+ )
113
+ roughness_map = generate_roughness_map(
114
+ img_array, request.rough_invert, request.rough_sharpness,
115
+ request.rough_detail, request.rough_freq
116
+ )
117
+
118
+ # Convert to base64
119
+ normal_base64 = image_to_base64(normal_map)
120
+ displacement_base64 = image_to_base64(displacement_map)
121
+ roughness_base64 = image_to_base64(roughness_map)
122
+
123
+ return JSONResponse(content={
124
+ "status": "success",
125
+ "normal_map": normal_base64,
126
+ "displacement_map": displacement_base64,
127
+ "roughness_map": roughness_base64
128
+ })
129
+
130
+ except Exception as e:
131
+ raise HTTPException(status_code=500, detail=str(e))