|
import gradio as gr |
|
import mediapipe as mp |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
from transformers import AutoTokenizer, AutoProcessor, AutoModel |
|
|
|
model_id = "Qwen/Qwen2-VL-7B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
model = AutoModel.from_pretrained(model_id, trust_remote_code=True, device_map="auto").eval() |
|
|
|
mp_pose = mp.solutions.pose |
|
|
|
def analyze_posture_by_keypoints(landmarks): |
|
left_shoulder = landmarks.landmark[11] |
|
right_shoulder = landmarks.landmark[12] |
|
left_ear = landmarks.landmark[7] |
|
right_ear = landmarks.landmark[8] |
|
|
|
shoulder_x = (left_shoulder.x + right_shoulder.x) / 2 |
|
ear_x = (left_ear.x + right_ear.x) / 2 |
|
delta = ear_x - shoulder_x |
|
if abs(delta) > 0.06: |
|
return "该用户存在驼背或低头倾向,头部明显前倾。" |
|
else: |
|
return "该用户坐姿较为端正,头部与肩部对齐。" |
|
|
|
def process(image: Image): |
|
np_image = np.array(image) |
|
with mp_pose.Pose(static_image_mode=True) as pose: |
|
results = pose.process(cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)) |
|
if not results.pose_landmarks: |
|
return "❗ 无法检测到人体,请上传包含上半身的清晰坐姿照片。" |
|
|
|
posture_analysis = analyze_posture_by_keypoints(results.pose_landmarks) |
|
prompt = f"请根据以下坐姿描述生成中英文提醒:\n{posture_analysis}" |
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=512) |
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return result |
|
|
|
demo = gr.Interface( |
|
fn=process, |
|
inputs=gr.Image(type="pil", label="上传你的坐姿照片"), |
|
outputs=gr.Textbox(label="中英文坐姿分析结果"), |
|
title="🪑 Qwen2-VL 坐姿识别助手(修复版)", |
|
description="融合 Mediapipe 与 Qwen2-VL 模型,判断是否驼背并生成中英文提醒。", |
|
theme="soft", |
|
allow_flagging="never" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|