File size: 2,165 Bytes
d63544f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import mediapipe as mp
import cv2
import numpy as np
from PIL import Image
from transformers import AutoTokenizer, AutoProcessor, AutoModel

model_id = "Qwen/Qwen2-VL-7B"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
model = AutoModel.from_pretrained(model_id, trust_remote_code=True, device_map="auto").eval()

mp_pose = mp.solutions.pose

def analyze_posture_by_keypoints(landmarks):
    left_shoulder = landmarks.landmark[11]
    right_shoulder = landmarks.landmark[12]
    left_ear = landmarks.landmark[7]
    right_ear = landmarks.landmark[8]

    shoulder_x = (left_shoulder.x + right_shoulder.x) / 2
    ear_x = (left_ear.x + right_ear.x) / 2
    delta = ear_x - shoulder_x
    if abs(delta) > 0.06:
        return "该用户存在驼背或低头倾向,头部明显前倾。"
    else:
        return "该用户坐姿较为端正,头部与肩部对齐。"

def process(image: Image):
    np_image = np.array(image)
    with mp_pose.Pose(static_image_mode=True) as pose:
        results = pose.process(cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR))
        if not results.pose_landmarks:
            return "❗ 无法检测到人体,请上传包含上半身的清晰坐姿照片。"

        posture_analysis = analyze_posture_by_keypoints(results.pose_landmarks)
        prompt = f"请根据以下坐姿描述生成中英文提醒:\n{posture_analysis}"
        inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device)
        outputs = model.generate(**inputs, max_new_tokens=512)
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return result

demo = gr.Interface(
    fn=process,
    inputs=gr.Image(type="pil", label="上传你的坐姿照片"),
    outputs=gr.Textbox(label="中英文坐姿分析结果"),
    title="🪑 Qwen2-VL 坐姿识别助手(修复版)",
    description="融合 Mediapipe 与 Qwen2-VL 模型,判断是否驼背并生成中英文提醒。",
    theme="soft",
    allow_flagging="never"
)

if __name__ == "__main__":
    demo.launch()