Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
import torch | |
model_name = "TheBloke/Pygmalion-7B-GPTQ" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True) | |
training_args = TrainingArguments( | |
output_dir="./MoinRomanticBot-Lora", | |
per_device_train_batch_size=1, | |
per_device_eval_batch_size=1, | |
evaluation_strategy="steps", | |
save_strategy="steps", | |
save_steps=100, | |
logging_steps=10, | |
learning_rate=5e-5, | |
weight_decay=0.01, | |
warmup_steps=100, | |
num_train_epochs=1, | |
save_total_limit=1, | |
push_to_hub=False | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=None, # Add your training dataset | |
eval_dataset=None, # Add your evaluation dataset | |
) | |
trainer.train() | |
model.save_pretrained("./MoinRomanticBot-Lora") | |
tokenizer.save_pretrained("./MoinRomanticBot-Lora") |