from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments import torch model_name = "TheBloke/Pygmalion-7B-GPTQ" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True) training_args = TrainingArguments( output_dir="./MoinRomanticBot-Lora", per_device_train_batch_size=1, per_device_eval_batch_size=1, evaluation_strategy="steps", save_strategy="steps", save_steps=100, logging_steps=10, learning_rate=5e-5, weight_decay=0.01, warmup_steps=100, num_train_epochs=1, save_total_limit=1, push_to_hub=False ) trainer = Trainer( model=model, args=training_args, train_dataset=None, # Add your training dataset eval_dataset=None, # Add your evaluation dataset ) trainer.train() model.save_pretrained("./MoinRomanticBot-Lora") tokenizer.save_pretrained("./MoinRomanticBot-Lora")