syedfaisalabrar's picture
Update app.py
708bb4e verified
raw
history blame
6.36 kB
import gradio as gr
import torch
import cv2
import os
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from decord import VideoReader, cpu
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from backPrompt import main as main_b
from frontPrompt import main as main_f
import sentencepiece as spm
model_path = "best.pt"
modelY = YOLO(model_path)
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
cache_folder = "./.cache"
path = "OpenGVLab/InternVL2_5-2B"
# Load the Hugging Face model and tokenizer globally (downloaded only once)
model = AutoModel.from_pretrained(
path,
cache_dir=cache_folder,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
# load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval().cpu()
tokenizer = AutoTokenizer.from_pretrained(
path,
cache_dir=cache_folder,
trust_remote_code=True,
use_fast=False
)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
# Ensure the image is a PIL Image
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# Calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# Find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# Calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# Resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
# Calculate the crop box for each block
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# Split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images[0]
def imageRotation(image):
if image.height > image.width:
return image.rotate(90, expand=True)
return image
def detect_document(image):
"""Detects front and back of the document using YOLO."""
image = np.array(image)
results = modelY(image, conf=0.85)
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = modelY.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf)) # Store bounding box with class and confidence
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image), labels, bounding_boxes
def crop_image(image, bounding_boxes):
"""Crops detected bounding boxes from the image."""
cropped_images = {}
image = np.array(image)
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
cropped = image[y1:y2, x1:x2]
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
def vision_ai_api(image, doc_type):
if doc_type == "front":
results = main_f(image,model,tokenizer)
if doc_type == "back":
results = main_b(image,model,tokenizer)
return results
def predict(image):
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
processed_image = dynamic_preprocess(image)
rotated_image = imageRotation(processed_image) # Placeholder for rotation
detected_image, labels, bounding_boxes = detect_document(rotated_image)
cropped_images = crop_image(rotated_image, bounding_boxes)
# Call Vision AI separately for front and back if detected
front_result, back_result = None, None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
api_results = {
"front": front_result,
"back": back_result
}
single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image
return single_image, labels, api_results
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch()