File size: 6,357 Bytes
4622b44 1279782 4622b44 d885a52 4622b44 737ec25 9acd233 bda7431 fa25b8d 4622b44 af02505 383aa7e f7e5d1b 383aa7e 244c35c 383aa7e f7e5d1b 244c35c 383aa7e f7e5d1b 383aa7e fa25b8d 169c06a b078d73 240a46b b078d73 708bb4e b078d73 d885a52 708bb4e b078d73 708bb4e b078d73 4622b44 708bb4e b078d73 708bb4e b078d73 708bb4e b078d73 708bb4e b078d73 708bb4e b078d73 708bb4e b078d73 708bb4e 4622b44 fa25b8d f9de43f f520e17 f9de43f af1f46a fa25b8d f9de43f af02505 4622b44 f9de43f 4622b44 f9de43f 4622b44 c68f3a4 4622b44 f9de43f 4622b44 f9de43f 04dd650 f9de43f 04dd650 f9de43f 4622b44 1e12937 f9de43f d144786 f9de43f 4622b44 1e12937 f9de43f 9acd233 244c35c 9acd233 244c35c 9acd233 f9de43f 1e12937 f9de43f c098b84 f9de43f d79e816 f9de43f ce943c6 4622b44 1e12937 4622b44 f9de43f 4622b44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import gradio as gr
import torch
import cv2
import os
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from decord import VideoReader, cpu
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from backPrompt import main as main_b
from frontPrompt import main as main_f
import sentencepiece as spm
model_path = "best.pt"
modelY = YOLO(model_path)
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
cache_folder = "./.cache"
path = "OpenGVLab/InternVL2_5-2B"
# Load the Hugging Face model and tokenizer globally (downloaded only once)
model = AutoModel.from_pretrained(
path,
cache_dir=cache_folder,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
# load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval().cpu()
tokenizer = AutoTokenizer.from_pretrained(
path,
cache_dir=cache_folder,
trust_remote_code=True,
use_fast=False
)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
# Ensure the image is a PIL Image
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# Calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# Find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# Calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# Resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
# Calculate the crop box for each block
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# Split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images[0]
def imageRotation(image):
if image.height > image.width:
return image.rotate(90, expand=True)
return image
def detect_document(image):
"""Detects front and back of the document using YOLO."""
image = np.array(image)
results = modelY(image, conf=0.85)
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = modelY.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf)) # Store bounding box with class and confidence
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image), labels, bounding_boxes
def crop_image(image, bounding_boxes):
"""Crops detected bounding boxes from the image."""
cropped_images = {}
image = np.array(image)
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
cropped = image[y1:y2, x1:x2]
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
def vision_ai_api(image, doc_type):
if doc_type == "front":
results = main_f(image,model,tokenizer)
if doc_type == "back":
results = main_b(image,model,tokenizer)
return results
def predict(image):
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
processed_image = dynamic_preprocess(image)
rotated_image = imageRotation(processed_image) # Placeholder for rotation
detected_image, labels, bounding_boxes = detect_document(rotated_image)
cropped_images = crop_image(rotated_image, bounding_boxes)
# Call Vision AI separately for front and back if detected
front_result, back_result = None, None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
api_results = {
"front": front_result,
"back": back_result
}
single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image
return single_image, labels, api_results
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch()
|