Update app.py
Browse files
app.py
CHANGED
@@ -41,8 +41,12 @@ def vision_ai_api(image, label):
|
|
41 |
}
|
42 |
|
43 |
def predict(image):
|
44 |
-
image
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
results = model(image, conf=0.80)
|
47 |
|
48 |
detected_classes = set()
|
@@ -62,19 +66,22 @@ def predict(image):
|
|
62 |
labels.append(f"{class_name} {conf:.2f}")
|
63 |
|
64 |
# Ensure bounding boxes are within the image
|
65 |
-
height, width = image.shape[:2]
|
66 |
x1, y1, x2, y2 = max(0, x1), max(0, y1), min(width, x2), min(height, y2)
|
67 |
|
68 |
if x1 >= x2 or y1 >= y2:
|
69 |
print("Invalid bounding box, skipping.")
|
70 |
continue
|
71 |
|
72 |
-
cropped = image[y1:y2, x1:x2]
|
73 |
-
cropped_pil = Image.fromarray(cropped)
|
74 |
|
75 |
# Call API
|
76 |
api_response = vision_ai_api(cropped_pil, class_name)
|
77 |
-
cropped_images[class_name] = {
|
|
|
|
|
|
|
78 |
|
79 |
if not cropped_images:
|
80 |
return None, "No front detected", None, "No back detected", ["No valid detections"]
|
@@ -88,6 +95,7 @@ def predict(image):
|
|
88 |
)
|
89 |
|
90 |
|
|
|
91 |
# Gradio Interface
|
92 |
iface = gr.Interface(
|
93 |
fn=predict,
|
|
|
41 |
}
|
42 |
|
43 |
def predict(image):
|
44 |
+
# Convert PIL image to NumPy array
|
45 |
+
if isinstance(image, Image.Image):
|
46 |
+
image = np.array(image)
|
47 |
+
|
48 |
+
image = preprocess_image(image) # Apply preprocessing
|
49 |
+
|
50 |
results = model(image, conf=0.80)
|
51 |
|
52 |
detected_classes = set()
|
|
|
66 |
labels.append(f"{class_name} {conf:.2f}")
|
67 |
|
68 |
# Ensure bounding boxes are within the image
|
69 |
+
height, width = image.shape[:2] # ✅ This now works
|
70 |
x1, y1, x2, y2 = max(0, x1), max(0, y1), min(width, x2), min(height, y2)
|
71 |
|
72 |
if x1 >= x2 or y1 >= y2:
|
73 |
print("Invalid bounding box, skipping.")
|
74 |
continue
|
75 |
|
76 |
+
cropped = image[y1:y2, x1:x2] # Crop the detected region
|
77 |
+
cropped_pil = Image.fromarray(cropped) # Convert back to PIL
|
78 |
|
79 |
# Call API
|
80 |
api_response = vision_ai_api(cropped_pil, class_name)
|
81 |
+
cropped_images[class_name] = {
|
82 |
+
"image": cropped_pil,
|
83 |
+
"api_response": json.dumps(api_response, indent=4)
|
84 |
+
}
|
85 |
|
86 |
if not cropped_images:
|
87 |
return None, "No front detected", None, "No back detected", ["No valid detections"]
|
|
|
95 |
)
|
96 |
|
97 |
|
98 |
+
|
99 |
# Gradio Interface
|
100 |
iface = gr.Interface(
|
101 |
fn=predict,
|