syedfaisalabrar's picture
Update app.py
244c35c verified
raw
history blame
4.02 kB
import gradio as gr
import torch
import cv2
import os
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from backPrompt import main as main_b
from frontPrompt import main as main_f
model_path = "best.pt"
model = YOLO(model_path)
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
# load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
def preprocessing(image):
"""Apply three enhancement filters, including brightness reduction, and resize."""
image = Image.fromarray(np.array(image))
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
width = 800
aspect_ratio = image.height / image.width
height = int(width * aspect_ratio)
image = image.resize((width, height))
return image
def imageRotation(image):
if image.height > image.width:
return image.rotate(90, expand=True)
return image
def detect_document(image):
"""Detects front and back of the document using YOLO."""
image = np.array(image)
results = model(image, conf=0.85)
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = model.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf)) # Store bounding box with class and confidence
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image), labels, bounding_boxes
def crop_image(image, bounding_boxes):
"""Crops detected bounding boxes from the image."""
cropped_images = {}
image = np.array(image)
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
cropped = image[y1:y2, x1:x2]
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
def vision_ai_api(image, doc_type):
if doc_type == "front":
results = main_f(image,model,tokenizer)
if doc_type == "back":
results = main_b(image,model,tokenizer)
return results
def predict(image):
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
processed_image = preprocessing(image)
rotated_image = imageRotation(processed_image) # Placeholder for rotation
detected_image, labels, bounding_boxes = detect_document(rotated_image)
cropped_images = crop_image(rotated_image, bounding_boxes)
# Call Vision AI separately for front and back if detected
front_result, back_result = None, None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
api_results = {
"front": front_result,
"back": back_result
}
single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image
return single_image, labels, api_results
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch()