File size: 4,018 Bytes
4622b44
 
 
1279782
4622b44
d885a52
4622b44
9acd233
 
fa25b8d
4622b44
 
 
244c35c
 
 
 
 
 
 
 
fa25b8d
f9de43f
 
 
d885a52
d79e816
d885a52
 
 
 
d79e816
d885a52
 
 
 
4622b44
 
 
fa25b8d
f9de43f
f520e17
 
f9de43f
af1f46a
fa25b8d
f9de43f
 
 
 
4622b44
f9de43f
4622b44
f9de43f
4622b44
 
 
 
 
 
 
 
 
f9de43f
 
 
4622b44
f9de43f
 
04dd650
f9de43f
 
 
 
04dd650
f9de43f
4622b44
1e12937
f9de43f
 
 
 
 
 
 
 
d144786
f9de43f
4622b44
1e12937
f9de43f
9acd233
 
244c35c
9acd233
244c35c
9acd233
 
f9de43f
1e12937
f9de43f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d79e816
f9de43f
 
 
 
ce943c6
 
4622b44
1e12937
4622b44
 
f9de43f
 
 
4622b44
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import gradio as gr
import torch
import cv2
import os
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from backPrompt import main as main_b
from frontPrompt import main as main_f

model_path = "best.pt" 
model = YOLO(model_path)

model = AutoModel.from_pretrained(
    path,
    torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
    # load_in_8bit=True,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)

def preprocessing(image):
    """Apply three enhancement filters, including brightness reduction, and resize."""
    image = Image.fromarray(np.array(image))


    image = ImageEnhance.Sharpness(image).enhance(2.0)  # Increase sharpness
    image = ImageEnhance.Contrast(image).enhance(1.5)   # Increase contrast
    image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness

    
    width = 800
    aspect_ratio = image.height / image.width
    height = int(width * aspect_ratio)
    image = image.resize((width, height))

    return image


def imageRotation(image):
    if image.height > image.width:  
        return image.rotate(90, expand=True) 
    return image


def detect_document(image):
    """Detects front and back of the document using YOLO."""
    image = np.array(image)
    results = model(image, conf=0.85)

    detected_classes = set()  
    labels = []
    bounding_boxes = []

    for result in results:
        for box in result.boxes:
            x1, y1, x2, y2 = map(int, box.xyxy[0])
            conf = box.conf[0]
            cls = int(box.cls[0])
            class_name = model.names[cls]

            detected_classes.add(class_name)
            label = f"{class_name} {conf:.2f}"
            labels.append(label)
            bounding_boxes.append((x1, y1, x2, y2, class_name, conf))  # Store bounding box with class and confidence

            cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    possible_classes = {"front", "back"}
    missing_classes = possible_classes - detected_classes
    if missing_classes:
        labels.append(f"Missing: {', '.join(missing_classes)}")

    return Image.fromarray(image), labels, bounding_boxes


def crop_image(image, bounding_boxes):
    """Crops detected bounding boxes from the image."""
    cropped_images = {}
    image = np.array(image)

    for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
        cropped = image[y1:y2, x1:x2]
        cropped_images[class_name] = Image.fromarray(cropped)

    return cropped_images


def vision_ai_api(image, doc_type):

    if doc_type == "front":
        results = main_f(image,model,tokenizer)
    if doc_type == "back":
        results = main_b(image,model,tokenizer)
        
    return results


def predict(image):
    """Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
    processed_image = preprocessing(image)
    rotated_image = imageRotation(processed_image)  # Placeholder for rotation
    detected_image, labels, bounding_boxes = detect_document(rotated_image)

    cropped_images = crop_image(rotated_image, bounding_boxes)

    # Call Vision AI separately for front and back if detected
    front_result, back_result = None, None
    if "front" in cropped_images:
        front_result = vision_ai_api(cropped_images["front"], "front")
    if "back" in cropped_images:
        back_result = vision_ai_api(cropped_images["back"], "back")

    
    api_results = {
        "front": front_result,
        "back": back_result
    }
    single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image   
    return single_image, labels, api_results


iface = gr.Interface(
    fn=predict, 
    inputs="image", 
    outputs=["image", "text", "json"],  
    title="License Field Detection (Front & Back Card)"
)

iface.launch()