Spaces:
Configuration error
Configuration error
set -euo pipefail | |
IFS=$'\n\t' | |
# === ENV VARIABLES === | |
export HF_HOME="$HOME/.cache/huggingface" | |
export MODEL_NAME="EleutherAI/gpt-neo-1.3B" | |
export WORK_DIR="$HOME/dev/shx-hfspace" | |
export VENV_DIR="$WORK_DIR/shx-venv" | |
export LOG_FILE="$WORK_DIR/shx-setup.log" | |
export CONFIG_FILE="$WORK_DIR/shx-config.json" | |
export HF_SPACE_NAME="SHX-Auto" | |
export HF_USERNAME="subatomicERROR" | |
# === COLORS === | |
RED="\e[91m" | |
GREEN="\e[92m" | |
YELLOW="\e[93m" | |
CYAN="\e[96m" | |
RESET="\e[0m" | |
# === SELF-HEAL === | |
trap 'echo -e "\n${RED}❌ Error occurred at line $LINENO: $BASH_COMMAND${RESET}" >> "$LOG_FILE"; echo -e "${YELLOW}🔧 Triggering SHX Self-Healing...${RESET}"; shx_self_heal $LINENO "$BASH_COMMAND"' ERR | |
shx_self_heal() { | |
local line=$1 | |
local cmd="$2" | |
echo -e "${CYAN}🛠 Self-Healing (Line $line | Command: $cmd)${RESET}" | |
if [[ "$cmd" == *"pip install"* ]]; then | |
echo -e "${YELLOW}🔁 Retrying pip install with --no-cache-dir...${RESET}" | |
pip install --no-cache-dir transformers torch gradio git-lfs huggingface_hub || true | |
fi | |
if [[ "$cmd" == *"huggingface-cli login"* ]]; then | |
echo -e "${YELLOW}🔁 Retrying interactive Hugging Face login...${RESET}" | |
huggingface-cli login || true | |
fi | |
if [[ "$cmd" == *"git push"* ]]; then | |
echo -e "${YELLOW}🔁 Retrying git push...${RESET}" | |
git push -u origin main || true | |
fi | |
echo -e "${GREEN}✅ Self-Heal Complete. Please rerun if needed.${RESET}" | |
exit 1 | |
} | |
# === START === | |
echo -e "${CYAN}\n🌌 [SHX] Launching Hyper-Intelligent Setup...\n${RESET}" | |
# === CLEAN + VENV === | |
echo -e "${CYAN}🧹 Preparing Virtual Environment...${RESET}" | |
rm -rf "$VENV_DIR" | |
python3 -m venv "$VENV_DIR" | |
source "$VENV_DIR/bin/activate" | |
echo -e "${GREEN}✅ Venv activated at $VENV_DIR${RESET}" | |
# === DEPENDENCIES === | |
echo -e "${CYAN}\n📦 Installing Python packages...${RESET}" | |
pip install --upgrade pip | |
pip install --no-cache-dir transformers torch gradio git-lfs huggingface_hub | |
# === CHECK TORCH === | |
echo -e "${CYAN}🧠 Verifying PyTorch...\n${RESET}" | |
PYTORCH_VERSION=$(python3 -c "import torch; print(torch.__version__)") | |
echo -e "${GREEN}✅ PyTorch: $PYTORCH_VERSION${RESET}" | |
# === AUTHENTICATION === | |
echo -e "\n${CYAN}🔑 Enter your Hugging Face token:${RESET}" | |
read -s hf_token | |
huggingface-cli login --token "$hf_token" | |
export HF_TOKEN="$hf_token" | |
whoami_output=$(huggingface-cli whoami) | |
echo -e "${GREEN}✅ Logged in as: $whoami_output${RESET}" | |
# === MODEL SELECTION === | |
echo -e "\n${CYAN}🔧 Select a model (default: EleutherAI/gpt-neo-1.3B):${RESET}" | |
read -p "Model name: " selected_model | |
MODEL_NAME=${selected_model:-EleutherAI/gpt-neo-1.3B} | |
export HF_MODEL="$MODEL_NAME" | |
# === CLEAR BROKEN CACHE === | |
echo -e "${CYAN}\n🔄 Clearing broken cache for $MODEL_NAME...${RESET}" | |
rm -rf ~/.cache/huggingface/hub/models--EleutherAI--gpt-neo-1.3B | |
# === MODEL DOWNLOAD === | |
echo -e "${CYAN}\n🚀 Downloading $MODEL_NAME Model (via GPTNeoForCausalLM)...\n${RESET}" | |
python3 - <<EOF | |
from transformers import GPT2Tokenizer, GPTNeoForCausalLM | |
print("🔍 Downloading tokenizer & model (GPTNeoForCausalLM)...") | |
tokenizer = GPT2Tokenizer.from_pretrained("$MODEL_NAME") | |
tokenizer.pad_token = tokenizer.eos_token | |
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME") | |
print("✅ Model ready (GPTNeoForCausalLM).") | |
EOF | |
# === GRADIO APP === | |
echo -e "${CYAN}🖥️ Writing Gradio Interface...${RESET}" | |
cat <<EOF > "$WORK_DIR/app.py" | |
import gradio as gr | |
from transformers import GPT2Tokenizer, GPTNeoForCausalLM | |
import torch | |
import json | |
import os | |
# Load configuration | |
config_file = "shx-config.json" | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
tokenizer = GPT2Tokenizer.from_pretrained(config["model_name"]) | |
tokenizer.pad_token = tokenizer.eos_token | |
model = GPTNeoForCausalLM.from_pretrained(config["model_name"]) | |
chat_history = [] | |
def shx_terminal(prompt, history): | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True) | |
input_ids = inputs.input_ids | |
attention_mask = inputs.attention_mask | |
pad_token_id = tokenizer.eos_token_id | |
try: | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
pad_token_id=pad_token_id, | |
max_length=config["max_length"], | |
temperature=config["temperature"], | |
top_k=config["top_k"], | |
top_p=config["top_p"], | |
do_sample=True | |
) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
chat_history.append((prompt, response)) | |
return response, chat_history | |
except Exception as e: | |
return f"⚠️ SHX caught an error during generation:\\n{str(e)}", chat_history | |
with gr.Blocks(css="body { background-color: black; color: #00FF41; font-family: monospace; }") as demo: | |
gr.Markdown("## 🤖 **SHX-Auto: Multiversal System Builder**") | |
with gr.Row(): | |
with gr.Column(): | |
input_box = gr.Textbox(label="Your Command") | |
output_box = gr.Textbox(label="SHX Response") | |
run_btn = gr.Button("Run") | |
run_btn.click(shx_terminal, inputs=[input_box, gr.State(chat_history)], outputs=[output_box, gr.State(chat_history)]) | |
with gr.Column(): | |
chat_box = gr.Chatbot(label="Chat History") | |
chat_box.update(chat_history) | |
demo.launch() | |
EOF | |
# === REQUIREMENTS & README === | |
echo -e "${CYAN}📦 Writing requirements.txt and README.md...${RESET}" | |
cat <<EOF > "$WORK_DIR/requirements.txt" | |
transformers | |
torch | |
gradio | |
git-lfs | |
huggingface_hub | |
EOF | |
cat <<EOF > "$WORK_DIR/README.md" | |
--- | |
title: SHX-Auto GPT Space | |
emoji: 🧠 | |
colorFrom: gray | |
colorTo: blue | |
sdk: gradio | |
sdk_version: "3.50.2" | |
app_file: app.py | |
pinned: true | |
--- | |
# 🚀 SHX-Auto: Hyperintelligent Neural Interface | |
> Built on **[EleutherAI/gpt-neo-1.3](https://huggingface.co/EleutherAI/gpt-neo-1.3)** | |
> Powered by ⚡ Gradio + Hugging Face Spaces + Quantum-AI Concepts | |
--- | |
## 🧬 Purpose | |
SHX-Auto is a **self-evolving AI agent** designed to generate full-stack solutions, SaaS, and code with real-time inference using the `EleutherAI/gpt-neo-1.3` model. It is a powerful tool for quantum-native developers, enabling them to build and automate complex systems with ease. | |
## 🧠 Model Used | |
- **Model:** [`EleutherAI/gpt-neo-1.3`](https://huggingface.co/EleutherAI/gpt-neo-1.3) | |
- **Architecture:** Transformer Decoder | |
- **Training Data:** The Pile (825GB diverse dataset) | |
- **Use Case:** Conversational AI, Code Generation, SaaS Bootstrapping | |
--- | |
## 🎮 How to Use | |
Interact with SHX below 👇 | |
Type in English — it auto-generates: | |
- ✅ Python Code | |
- ✅ Websites / HTML / CSS / JS | |
- ✅ SaaS / APIs | |
- ✅ AI Agent Logic | |
--- | |
## ⚙️ Technologies | |
- ⚛️ GPT-Neo 1.3B | |
- 🧠 SHX Agent Core | |
- 🌀 Gradio SDK 3.50.2 | |
- 🐍 Python 3.10 | |
- 🌐 Hugging Face Spaces | |
--- | |
## 🚀 Getting Started | |
### Overview | |
SHX-Auto is a powerful, GPT-Neo-based terminal agent designed to assist quantum-native developers in building and automating complex systems. With its advanced natural language processing capabilities, SHX-Auto can understand and execute a wide range of commands, making it an indispensable tool for developers. | |
### Features | |
- **Advanced NLP**: Utilizes the EleutherAI/gpt-neo-1.3 model for sophisticated language understanding and generation. | |
- **Gradio Interface**: User-friendly interface for interacting with the model. | |
- **Customizable Configuration**: Easily adjust model parameters such as temperature, top_k, and top_p. | |
- **Real-time Feedback**: Get immediate responses to your commands and see the chat history. | |
### Usage | |
1. **Initialize the Space**: | |
- Clone the repository or create a new Space on Hugging Face. | |
- Ensure you have the necessary dependencies installed. | |
2. **Run the Application**: | |
- Use the Gradio interface to interact with SHX-Auto. | |
- Enter your commands in the input box and click "Run" to get responses. | |
### Configuration | |
- **Model Name**: `EleutherAI/gpt-neo-1.3` | |
- **Max Length**: 150 | |
- **Temperature**: 0.7 | |
- **Top K**: 50 | |
- **Top P**: 0.9 | |
### Example | |
```python | |
# Example command | |
prompt = "Create a simple web application with a form to collect user data." | |
response = shx_terminal(prompt) | |
print(f"🤖 SHX Response: {response}") | |
Final Steps | |
Initialize git in this folder: | |
git init | |
Commit your SHX files: | |
git add . && git commit -m "Initial SHX commit" | |
Create the Space manually (choose SDK: gradio/static/etc): | |
huggingface-cli repo create SHX-Auto --type space --space-sdk gradio | |
Add remote: | |
git remote add origin https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto | |
Push your space: | |
git branch -M main && git push -u origin main | |
🌐 After that, visit: https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto | |
SHX interface will now be live on Hugging Face. HAPPY CODING! | |
For more information and support, visit our GitHub repository: | |
https://github.com/subatomicERROR | |
EOF | |
=== CONFIGURATION FILE === | |
echo -e "CYAN⚙®Writingconfigurationfile...{CYAN}⚙️ Writing configuration file...CYAN⚙R◯Writingconfigurationfile...{RESET}" | |
cat <<EOF > "WORK_DIR/shx-config.json" { "model_name": "MODEL_NAME", | |
"max_length": 150, | |
"temperature": 0.7, | |
"top_k": 50, | |
"top_p": 0.9 | |
} | |
EOF | |
=== FINAL TEST === | |
echo -e "CYAN\n🧪RunningFinalTest...{CYAN}\n🧪 Running Final Test...CYAN\n🧪RunningFinalTest...{RESET}" | |
python3 - <<EOF | |
from transformers import GPT2Tokenizer, GPTNeoForCausalLM | |
import json | |
Load configuration | |
config_file = "shx-config.json" | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
tokenizer = GPT2Tokenizer.from_pretrained(config["model_name"]) | |
tokenizer.pad_token = tokenizer.eos_token | |
model = GPTNeoForCausalLM.from_pretrained(config["model_name"]) | |
prompt = "SHX is" | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True) | |
output = model.generate( | |
input_ids=inputs.input_ids, | |
attention_mask=inputs.attention_mask, | |
pad_token_id=tokenizer.eos_token_id, | |
max_length=config["max_length"], | |
temperature=config["temperature"], | |
top_k=config["top_k"], | |
top_p=config["top_p"], | |
do_sample=True | |
) | |
print("🧠 SHX Test Output:", tokenizer.decode(output[0], skip_special_tokens=True)) | |
EOF | |
echo -e "\nGREEN✅SHXisFULLYONLINEandOPERATIONAL(with{GREEN}✅ SHX is FULLY ONLINE and OPERATIONAL (withGREEN✅SHXisFULLYONLINEandOPERATIONAL(withMODEL_NAME)!RESET"echo−e"{RESET}" echo -e "RESET"echo−e"{CYAN}🌐 Access: https://huggingface.co/spaces/$HF_USERNAME/$HF_SPACE_NAME${RESET}" | |
=== AI-DRIVEN AUTOMATION === | |
echo -e "CYAN\n🤖InitializingAI−DrivenAutomation...{CYAN}\n🤖 Initializing AI-Driven Automation...CYAN\n🤖InitializingAI−DrivenAutomation...{RESET}" | |
cat <<EOF > "$WORK_DIR/shx-ai.py" | |
import json | |
import subprocess | |
import os | |
Load configuration | |
config_file = "shx-config.json" | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
def run_command(command): | |
try: | |
result = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) | |
return result.stdout | |
except subprocess.CalledProcessError as e: | |
return f"⚠️ Error: {e.stderr}" | |
def shx_ai(prompt): | |
# Generate response using the model | |
response = run_command(f"python3 app.py --prompt '{prompt}'") | |
return response | |
Example usage | |
if name == "main": | |
prompt = "Create a simple web application with a form to collect user data." | |
response = shx_ai(prompt) | |
print(f"🤖 SHX Response: {response}") | |
EOF | |
echo -e "GREEN✅AI−DrivenAutomationInitialized.Readytobuildalmostanything!{GREEN}✅ AI-Driven Automation Initialized. Ready to build almost anything!GREEN✅AI−DrivenAutomationInitialized.Readytobuildalmostanything!{RESET}" | |
=== FINAL MESSAGE === | |
echo "" | |
echo "🚀 ☁️ Boom your SHX is ready! And now fully configured." | |
echo "" | |
echo "✅ PyTorch: PYTORCHVERSION"echo"✅Model:PYTORCH_VERSION" echo "✅ Model:PYTORCHVERSION"echo"✅Model:HF_MODEL" | |
echo "✅ Hugging Face Token saved for: HF_USERNAME" echo "" echo "🛠️ Now to push your SHX Space manually to Hugging Face, follow these final steps:" echo "" echo "1. Initialize git in this folder:" echo " git init" echo "" echo "2. Commit your SHX files:" echo " git add . && git commit -m \"Initial SHX commit\"" echo "" echo "3. Create the Space manually (choose SDK: gradio/static/etc):" echo " huggingface-cli repo create SHX-Auto --type space --space-sdk gradio" echo "" echo "4. Add remote:" echo " git remote add origin https://huggingface.co/spaces/HF_USERNAME/SHX-Auto" | |
echo "" | |
echo "5. Push your space:" | |
echo " git branch -M main && git push -u origin main" | |
echo "" | |
echo "🌐 After that, visit: https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto" | |
echo "" | |
echo "SHX interface will now be live on Hugging Face. HAPPY CODING!" | |
echo "" | |
echo "For more information and support, visit our GitHub repository:" | |
echo "https://github.com/subatomicERROR" | |
echo "" |