File size: 12,942 Bytes
206c9a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c62d5
 
206c9a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c62d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206c9a3
a9c62d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206c9a3
 
a9c62d5
206c9a3
a9c62d5
206c9a3
 
 
a9c62d5
206c9a3
a9c62d5
 
 
206c9a3
 
 
 
 
 
 
a9c62d5
 
 
 
 
 
 
 
206c9a3
 
 
 
a9c62d5
 
206c9a3
a9c62d5
206c9a3
 
 
 
a9c62d5
206c9a3
a9c62d5
 
 
206c9a3
 
a9c62d5
 
 
 
 
206c9a3
 
a9c62d5
 
 
 
 
 
 
 
 
206c9a3
 
a9c62d5
 
206c9a3
 
a9c62d5
206c9a3
a9c62d5
 
206c9a3
 
a9c62d5
206c9a3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#!/bin/bash
set -euo pipefail
IFS=$'\n\t'

# === ENV VARIABLES ===
export HF_HOME="$HOME/.cache/huggingface"
export MODEL_NAME="EleutherAI/gpt-neo-1.3B"
export WORK_DIR="$HOME/dev/shx-hfspace"
export VENV_DIR="$WORK_DIR/shx-venv"
export LOG_FILE="$WORK_DIR/shx-setup.log"
export CONFIG_FILE="$WORK_DIR/shx-config.json"
export HF_SPACE_NAME="SHX-Auto"
export HF_USERNAME="subatomicERROR"

# === COLORS ===
RED="\e[91m"
GREEN="\e[92m"
YELLOW="\e[93m"
CYAN="\e[96m"
RESET="\e[0m"

# === SELF-HEAL ===
trap 'echo -e "\n${RED}❌ Error occurred at line $LINENO: $BASH_COMMAND${RESET}" >> "$LOG_FILE"; echo -e "${YELLOW}🔧 Triggering SHX Self-Healing...${RESET}"; shx_self_heal $LINENO "$BASH_COMMAND"' ERR

shx_self_heal() {
    local line=$1
    local cmd="$2"
    echo -e "${CYAN}🛠 Self-Healing (Line $line | Command: $cmd)${RESET}"

    if [[ "$cmd" == *"pip install"* ]]; then
        echo -e "${YELLOW}🔁 Retrying pip install with --no-cache-dir...${RESET}"
        pip install --no-cache-dir transformers torch gradio git-lfs huggingface_hub || true
    fi

    if [[ "$cmd" == *"huggingface-cli login"* ]]; then
        echo -e "${YELLOW}🔁 Retrying interactive Hugging Face login...${RESET}"
        huggingface-cli login || true
    fi

    if [[ "$cmd" == *"git push"* ]]; then
        echo -e "${YELLOW}🔁 Retrying git push...${RESET}"
        git push -u origin main || true
    fi

    echo -e "${GREEN}✅ Self-Heal Complete. Please rerun if needed.${RESET}"
    exit 1
}

# === START ===
echo -e "${CYAN}\n🌌 [SHX] Launching Hyper-Intelligent Setup...\n${RESET}"

# === CLEAN + VENV ===
echo -e "${CYAN}🧹 Preparing Virtual Environment...${RESET}"
rm -rf "$VENV_DIR"
python3 -m venv "$VENV_DIR"
source "$VENV_DIR/bin/activate"
echo -e "${GREEN}✅ Venv activated at $VENV_DIR${RESET}"

# === DEPENDENCIES ===
echo -e "${CYAN}\n📦 Installing Python packages...${RESET}"
pip install --upgrade pip
pip install --no-cache-dir transformers torch gradio git-lfs huggingface_hub

# === CHECK TORCH ===
echo -e "${CYAN}🧠 Verifying PyTorch...\n${RESET}"
PYTORCH_VERSION=$(python3 -c "import torch; print(torch.__version__)")
echo -e "${GREEN}✅ PyTorch: $PYTORCH_VERSION${RESET}"

# === AUTHENTICATION ===
echo -e "\n${CYAN}🔑 Enter your Hugging Face token:${RESET}"
read -s hf_token
huggingface-cli login --token "$hf_token"
export HF_TOKEN="$hf_token"

whoami_output=$(huggingface-cli whoami)
echo -e "${GREEN}✅ Logged in as: $whoami_output${RESET}"

# === MODEL SELECTION ===
echo -e "\n${CYAN}🔧 Select a model (default: EleutherAI/gpt-neo-1.3B):${RESET}"
read -p "Model name: " selected_model
MODEL_NAME=${selected_model:-EleutherAI/gpt-neo-1.3B}
export HF_MODEL="$MODEL_NAME"

# === CLEAR BROKEN CACHE ===
echo -e "${CYAN}\n🔄 Clearing broken cache for $MODEL_NAME...${RESET}"
rm -rf ~/.cache/huggingface/hub/models--EleutherAI--gpt-neo-1.3B

# === MODEL DOWNLOAD ===
echo -e "${CYAN}\n🚀 Downloading $MODEL_NAME Model (via GPTNeoForCausalLM)...\n${RESET}"
python3 - <<EOF
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
print("🔍 Downloading tokenizer & model (GPTNeoForCausalLM)...")
tokenizer = GPT2Tokenizer.from_pretrained("$MODEL_NAME")
tokenizer.pad_token = tokenizer.eos_token
model = GPTNeoForCausalLM.from_pretrained("$MODEL_NAME")
print("✅ Model ready (GPTNeoForCausalLM).")
EOF

# === GRADIO APP ===
echo -e "${CYAN}🖥️ Writing Gradio Interface...${RESET}"
cat <<EOF > "$WORK_DIR/app.py"
import gradio as gr
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
import torch
import json
import os

# Load configuration
config_file = "shx-config.json"
with open(config_file, "r") as f:
    config = json.load(f)

tokenizer = GPT2Tokenizer.from_pretrained(config["model_name"])
tokenizer.pad_token = tokenizer.eos_token
model = GPTNeoForCausalLM.from_pretrained(config["model_name"])

chat_history = []

def shx_terminal(prompt, history):
    inputs = tokenizer(prompt, return_tensors="pt", padding=True)
    input_ids = inputs.input_ids
    attention_mask = inputs.attention_mask
    pad_token_id = tokenizer.eos_token_id

    try:
        with torch.no_grad():
            output = model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                pad_token_id=pad_token_id,
                max_length=config["max_length"],
                temperature=config["temperature"],
                top_k=config["top_k"],
                top_p=config["top_p"],
                do_sample=True
            )
        response = tokenizer.decode(output[0], skip_special_tokens=True)
        chat_history.append((prompt, response))
        return response, chat_history
    except Exception as e:
        return f"⚠️ SHX caught an error during generation:\\n{str(e)}", chat_history

with gr.Blocks(css="body { background-color: black; color: #00FF41; font-family: monospace; }") as demo:
    gr.Markdown("## 🤖 **SHX-Auto: Multiversal System Builder**")
    with gr.Row():
        with gr.Column():
            input_box = gr.Textbox(label="Your Command")
            output_box = gr.Textbox(label="SHX Response")
            run_btn = gr.Button("Run")
            run_btn.click(shx_terminal, inputs=[input_box, gr.State(chat_history)], outputs=[output_box, gr.State(chat_history)])
        with gr.Column():
            chat_box = gr.Chatbot(label="Chat History")
            chat_box.update(chat_history)

demo.launch()
EOF

# === REQUIREMENTS & README ===
echo -e "${CYAN}📦 Writing requirements.txt and README.md...${RESET}"
cat <<EOF > "$WORK_DIR/requirements.txt"
transformers
torch
gradio
git-lfs
huggingface_hub
EOF

cat <<EOF > "$WORK_DIR/README.md"
---
title: SHX-Auto GPT Space
emoji: 🧠
colorFrom: gray
colorTo: blue
sdk: gradio
sdk_version: "3.50.2"
app_file: app.py
pinned: true
---

# 🚀 SHX-Auto: Hyperintelligent Neural Interface

> Built on **[EleutherAI/gpt-neo-1.3](https://huggingface.co/EleutherAI/gpt-neo-1.3)**  
> Powered by ⚡ Gradio + Hugging Face Spaces + Quantum-AI Concepts

---

## 🧬 Purpose

SHX-Auto is a **self-evolving AI agent** designed to generate full-stack solutions, SaaS, and code with real-time inference using the `EleutherAI/gpt-neo-1.3` model. It is a powerful tool for quantum-native developers, enabling them to build and automate complex systems with ease.

## 🧠 Model Used

- **Model:** [`EleutherAI/gpt-neo-1.3`](https://huggingface.co/EleutherAI/gpt-neo-1.3)
- **Architecture:** Transformer Decoder
- **Training Data:** The Pile (825GB diverse dataset)
- **Use Case:** Conversational AI, Code Generation, SaaS Bootstrapping

---

## 🎮 How to Use

Interact with SHX below 👇  
Type in English — it auto-generates:

- ✅ Python Code
- ✅ Websites / HTML / CSS / JS
- ✅ SaaS / APIs
- ✅ AI Agent Logic

---

## ⚙️ Technologies

- ⚛️ GPT-Neo 1.3B
- 🧠 SHX Agent Core
- 🌀 Gradio SDK 3.50.2
- 🐍 Python 3.10
- 🌐 Hugging Face Spaces

---

## 🚀 Getting Started

### Overview

SHX-Auto is a powerful, GPT-Neo-based terminal agent designed to assist quantum-native developers in building and automating complex systems. With its advanced natural language processing capabilities, SHX-Auto can understand and execute a wide range of commands, making it an indispensable tool for developers.

### Features

- **Advanced NLP**: Utilizes the EleutherAI/gpt-neo-1.3 model for sophisticated language understanding and generation.
- **Gradio Interface**: User-friendly interface for interacting with the model.
- **Customizable Configuration**: Easily adjust model parameters such as temperature, top_k, and top_p.
- **Real-time Feedback**: Get immediate responses to your commands and see the chat history.

### Usage

1. **Initialize the Space**:
   - Clone the repository or create a new Space on Hugging Face.
   - Ensure you have the necessary dependencies installed.

2. **Run the Application**:
   - Use the Gradio interface to interact with SHX-Auto.
   - Enter your commands in the input box and click "Run" to get responses.

### Configuration

- **Model Name**: `EleutherAI/gpt-neo-1.3`
- **Max Length**: 150
- **Temperature**: 0.7
- **Top K**: 50
- **Top P**: 0.9

### Example

```python
# Example command
prompt = "Create a simple web application with a form to collect user data."
response = shx_terminal(prompt)
print(f"🤖 SHX Response: {response}")

Final Steps

    Initialize git in this folder:

    git init

    Commit your SHX files:

    git add . && git commit -m "Initial SHX commit"

    Create the Space manually (choose SDK: gradio/static/etc):

    huggingface-cli repo create SHX-Auto --type space --space-sdk gradio

    Add remote:

    git remote add origin https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto

    Push your space:

    git branch -M main && git push -u origin main

🌐 After that, visit: https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto

SHX interface will now be live on Hugging Face. HAPPY CODING!

For more information and support, visit our GitHub repository:
https://github.com/subatomicERROR
EOF
=== CONFIGURATION FILE ===

echo -e "CYAN⚙®Writingconfigurationfile...{CYAN}⚙️ Writing configuration file...CYAN⚙R◯Writingconfigurationfile...{RESET}"
cat <<EOF > "WORK_DIR/shx-config.json" { "model_name": "MODEL_NAME",
"max_length": 150,
"temperature": 0.7,
"top_k": 50,
"top_p": 0.9
}
EOF
=== FINAL TEST ===

echo -e "CYAN\n🧪RunningFinalTest...{CYAN}\n🧪 Running Final Test...CYAN\n🧪RunningFinalTest...{RESET}"
python3 - <<EOF
from transformers import GPT2Tokenizer, GPTNeoForCausalLM
import json
Load configuration

config_file = "shx-config.json"
with open(config_file, "r") as f:
config = json.load(f)

tokenizer = GPT2Tokenizer.from_pretrained(config["model_name"])
tokenizer.pad_token = tokenizer.eos_token
model = GPTNeoForCausalLM.from_pretrained(config["model_name"])
prompt = "SHX is"
inputs = tokenizer(prompt, return_tensors="pt", padding=True)
output = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
max_length=config["max_length"],
temperature=config["temperature"],
top_k=config["top_k"],
top_p=config["top_p"],
do_sample=True
)
print("🧠 SHX Test Output:", tokenizer.decode(output[0], skip_special_tokens=True))
EOF

echo -e "\nGREEN✅SHXisFULLYONLINEandOPERATIONAL(with{GREEN}✅ SHX is FULLY ONLINE and OPERATIONAL (withGREEN✅SHXisFULLYONLINEandOPERATIONAL(withMODEL_NAME)!RESET"echo−e"{RESET}" echo -e "RESET"echo−e"{CYAN}🌐 Access: https://huggingface.co/spaces/$HF_USERNAME/$HF_SPACE_NAME${RESET}"
=== AI-DRIVEN AUTOMATION ===

echo -e "CYAN\n🤖InitializingAI−DrivenAutomation...{CYAN}\n🤖 Initializing AI-Driven Automation...CYAN\n🤖InitializingAI−DrivenAutomation...{RESET}"
cat <<EOF > "$WORK_DIR/shx-ai.py"
import json
import subprocess
import os
Load configuration

config_file = "shx-config.json"
with open(config_file, "r") as f:
config = json.load(f)

def run_command(command):
try:
result = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
return result.stdout
except subprocess.CalledProcessError as e:
return f"⚠️ Error: {e.stderr}"

def shx_ai(prompt):
# Generate response using the model
response = run_command(f"python3 app.py --prompt '{prompt}'")
return response
Example usage

if name == "main":
prompt = "Create a simple web application with a form to collect user data."
response = shx_ai(prompt)
print(f"🤖 SHX Response: {response}")
EOF

echo -e "GREEN✅AI−DrivenAutomationInitialized.Readytobuildalmostanything!{GREEN}✅ AI-Driven Automation Initialized. Ready to build almost anything!GREEN✅AI−DrivenAutomationInitialized.Readytobuildalmostanything!{RESET}"
=== FINAL MESSAGE ===

echo ""
echo "🚀 ☁️ Boom your SHX is ready! And now fully configured."
echo ""
echo "✅ PyTorch: PYTORCHVERSION"echo"✅Model:PYTORCH_VERSION" echo "✅ Model:PYTORCHV​ERSION"echo"✅Model:HF_MODEL"
echo "✅ Hugging Face Token saved for: HF_USERNAME" echo "" echo "🛠️ Now to push your SHX Space manually to Hugging Face, follow these final steps:" echo "" echo "1. Initialize git in this folder:" echo " git init" echo "" echo "2. Commit your SHX files:" echo " git add . && git commit -m \"Initial SHX commit\"" echo "" echo "3. Create the Space manually (choose SDK: gradio/static/etc):" echo " huggingface-cli repo create SHX-Auto --type space --space-sdk gradio" echo "" echo "4. Add remote:" echo " git remote add origin https://huggingface.co/spaces/HF_USERNAME/SHX-Auto"
echo ""
echo "5. Push your space:"
echo " git branch -M main && git push -u origin main"
echo ""
echo "🌐 After that, visit: https://huggingface.co/spaces/$HF_USERNAME/SHX-Auto"
echo ""
echo "SHX interface will now be live on Hugging Face. HAPPY CODING!"
echo ""
echo "For more information and support, visit our GitHub repository:"
echo "https://github.com/subatomicERROR"
echo ""