work / app.py
start3406's picture
Create app.py
c102ebc verified
raw
history blame
13 kB
import gradio as gr
import torch
from transformers import pipeline, set_seed
from diffusers import StableDiffusionPipeline
import os
import time
# ---- 配置与模型加载 (在应用启动时加载一次) ----
# 检查是否有可用的GPU,否则使用CPU
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# 1. 语音转文本模型 (Whisper) - 加分项
asr_pipeline = None
try:
print("Loading ASR pipeline (Whisper)...")
# 使用较小的模型以节省资源,可根据需要替换 openai/whisper-medium 或 large
# 在不需要GPU的应用部分可以强制使用CPU
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device if device == "cuda" else -1) # whisper在CPU上也可以运行
print("ASR pipeline loaded.")
except Exception as e:
print(f"Could not load ASR pipeline: {e}. Voice input will be disabled.")
# 2. 提示词增强模型 (LLM) - Step 1
prompt_enhancer_pipeline = None
try:
print("Loading Prompt Enhancer pipeline (GPT-2)...")
# 使用 GPT-2 作为示例,实际应用中建议使用更强大的指令微调模型如 Mistral 或 Llama
# 注意:GPT-2 可能不会生成特别高质量的SD提示词,这里仅作结构演示
# 如果资源允许,可以替换为 'mistralai/Mistral-7B-Instruct-v0.1' 等,但需要更多内存/GPU
prompt_enhancer_pipeline = pipeline("text-generation", model="gpt2", device=device if device == "cuda" else -1) # text-generation在CPU上也可以运行
print("Prompt Enhancer pipeline loaded.")
except Exception as e:
print(f"Could not load Prompt Enhancer pipeline: {e}. Prompt enhancement might fail.")
# 3. 文本到图像模型 (Stable Diffusion) - Step 2
image_generator_pipe = None
try:
print("Loading Stable Diffusion pipeline (v1.5)...")
model_id = "runwayml/stable-diffusion-v1-5"
image_generator_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
image_generator_pipe = image_generator_pipe.to(device)
# 如果内存不足,可以启用CPU offloading (需要 accelerate库)
# image_generator_pipe.enable_model_cpu_offload()
print("Stable Diffusion pipeline loaded.")
except Exception as e:
print(f"Could not load Stable Diffusion pipeline: {e}. Image generation will fail.")
# 如果模型加载失败,创建一个虚拟对象以避免后续代码出错
class DummyPipe:
def __call__(self, *args, **kwargs):
# 返回一个占位符错误信息或图像
raise RuntimeError(f"Stable Diffusion model failed to load: {e}")
image_generator_pipe = DummyPipe()
# ---- 核心功能函数 ----
# Step 1: Prompt-to-Prompt
def enhance_prompt(short_prompt, style_modifier="cinematic", quality_boost="photorealistic, highly detailed"):
"""使用LLM增强简短描述"""
if not prompt_enhancer_pipeline:
return f"[Error: LLM not loaded] Original prompt: {short_prompt}"
if not short_prompt:
return "[Error: Input description is empty]"
# 构建给LLM的指令
# 注意:这个指令对GPT-2来说可能太复杂,对Mistral等更有效
input_text = (
f"Generate a detailed and vivid prompt for an AI image generator based on the following description. "
f"Incorporate the style '{style_modifier}' and quality boost '{quality_boost}'. "
f"Focus on visual details, lighting, composition, and mood. "
f"Description: \"{short_prompt}\"\n\n"
f"Detailed Prompt:"
)
try:
# 设置种子以获得可复现的(某种程度上的)结果
set_seed(int(time.time()))
# max_length 控制生成文本的总长度 (包括输入)
# num_return_sequences 返回多少个结果
# temperature 控制随机性,较低的值更保守
# no_repeat_ngram_size 避免重复短语
outputs = prompt_enhancer_pipeline(
input_text,
max_length=150, # 限制输出长度,避免过长
num_return_sequences=1,
temperature=0.7,
no_repeat_ngram_size=2,
pad_token_id=prompt_enhancer_pipeline.tokenizer.eos_token_id # 避免padding warning
)
generated_text = outputs[0]['generated_text']
# 从LLM的完整输出中提取增强后的提示词部分
# 简单方法:取 "Detailed Prompt:" 之后的内容
enhanced = generated_text.split("Detailed Prompt:")[-1].strip()
# 进一步清理可能包含的原始输入或指令痕迹
if short_prompt in enhanced[:len(short_prompt)+5]: # 如果开头包含原始输入
enhanced = enhanced.replace(short_prompt, "", 1).strip(' ,"')
# 添加基础的风格和质量词,如果LLM没有包含的话
if style_modifier not in enhanced:
enhanced += f", {style_modifier}"
if quality_boost not in enhanced:
enhanced += f", {quality_boost}"
return enhanced
except Exception as e:
print(f"Error during prompt enhancement: {e}")
return f"[Error: Prompt enhancement failed] Original prompt: {short_prompt}"
# Step 2: Prompt-to-Image
def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
"""使用Stable Diffusion生成图像"""
if not isinstance(image_generator_pipe, StableDiffusionPipeline):
raise gr.Error(f"Stable Diffusion model is not available. Load error: {image_generator_pipe}") # 使用gr.Error在UI上显示错误
if not prompt or "[Error:" in prompt:
raise gr.Error("Cannot generate image due to invalid or missing prompt.")
print(f"Generating image for prompt: {prompt}")
print(f"Negative prompt: {negative_prompt}")
print(f"Guidance scale: {guidance_scale}, Steps: {num_inference_steps}")
try:
# 设置随机种子
generator = torch.Generator(device=device).manual_seed(int(time.time()))
# 执行推理
with torch.inference_mode(): # 节省内存
image = image_generator_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=float(guidance_scale),
num_inference_steps=int(num_inference_steps),
generator=generator
).images[0]
print("Image generated successfully.")
return image
except Exception as e:
print(f"Error during image generation: {e}")
# 将底层错误传递给 Gradio,使其能在 UI 中显示
raise gr.Error(f"Image generation failed: {e}")
# Bonus: Voice-to-Text
def transcribe_audio(audio_file_path):
"""将音频文件转录为文本"""
if not asr_pipeline:
return "[Error: ASR model not loaded]", "" # 返回错误信息和空路径
if audio_file_path is None:
return "", "" # 没有音频输入
print(f"Transcribing audio file: {audio_file_path}")
try:
# 转录音频
transcription = asr_pipeline(audio_file_path)["text"]
print(f"Transcription result: {transcription}")
return transcription, audio_file_path # 返回文本和路径(可能用于显示)
except Exception as e:
print(f"Error during audio transcription: {e}")
return f"[Error: Transcription failed: {e}]", audio_file_path
# ---- Gradio 应用流程 ----
def process_input(input_text, audio_file, style_choice, quality_choice, neg_prompt, guidance, steps):
"""处理输入(文本或语音),生成提示词和图像"""
final_text_input = ""
transcription_source = "" # 用于标记来源
# 优先使用文本框输入
if input_text and input_text.strip():
final_text_input = input_text.strip()
transcription_source = " (from text input)"
# 如果文本框为空,且有音频文件,则使用语音输入
elif audio_file is not None:
transcribed_text, _ = transcribe_audio(audio_file)
if transcribed_text and "[Error:" not in transcribed_text:
final_text_input = transcribed_text
transcription_source = " (from audio input)"
elif "[Error:" in transcribed_text:
# 如果语音识别出错,直接返回错误信息
return transcribed_text, None # 返回错误提示,不生成图像
else:
# 音频为空或识别为空
return "[Error: Please provide input via text or voice]", None
else:
# 没有有效输入
return "[Error: Please provide input via text or voice]", None
print(f"Using input: '{final_text_input}'{transcription_source}")
# Step 1: Enhance prompt
enhanced_prompt = enhance_prompt(final_text_input, style_modifier=style_choice, quality_boost=quality_choice)
print(f"Enhanced prompt: {enhanced_prompt}")
# Step 2: Generate image (如果提示词增强成功)
generated_image = None
if "[Error:" not in enhanced_prompt:
try:
generated_image = generate_image(enhanced_prompt, neg_prompt, guidance, steps)
except gr.Error as e:
# 如果 generate_image 抛出 gr.Error,将其信息作为 enhanced_prompt 返回给UI
enhanced_prompt = f"{enhanced_prompt}\n\n[Image Generation Error: {e}]"
# 不再尝试显示图片
except Exception as e:
# 捕获其他意外错误
enhanced_prompt = f"{enhanced_prompt}\n\n[Unexpected Image Generation Error: {e}]"
# 返回结果给Gradio界面
return enhanced_prompt, generated_image
# ---- Gradio 界面构建 (Step 3: Controls & Step 4: Layout) ----
# 定义可选的风格和质量提升选项 (用于Dropdown/Radio)
style_options = ["cinematic", "photorealistic", "anime", "fantasy art", "cyberpunk", "steampunk", "watercolor"]
quality_options = ["highly detailed", "sharp focus", "intricate details", "4k", "masterpiece", "best quality"]
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# AI Image Generator: From Idea to Image")
gr.Markdown("Enter a short description (or use voice input), and the app will enhance it into a detailed prompt and generate an image using Stable Diffusion.")
with gr.Row():
with gr.Column(scale=1):
# 输入区域
inp_text = gr.Textbox(label="Enter short description here", placeholder="e.g., A magical treehouse in the sky")
# 加分项:语音输入控件
inp_audio = gr.Audio(sources=["microphone"], type="filepath", label="Or record your idea (clears text box if used)", visible=asr_pipeline is not None) # 只有ASR加载成功才显示
# Step 3: 使用不同控件
# 控件1: Dropdown (下拉菜单)
inp_style = gr.Dropdown(label="Choose Base Style", choices=style_options, value="cinematic")
# 控件2: Radio (单选框) - 也可以用 CheckboxGroup 实现多选
inp_quality = gr.Radio(label="Quality Boost", choices=quality_options, value="highly detailed")
# 控件3: Textbox (用于Negative Prompt)
inp_neg_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="e.g., blurry, low quality, text, watermark")
# 控件4: Slider (滑块)
inp_guidance = gr.Slider(minimum=1.0, maximum=20.0, step=0.5, value=7.5, label="Guidance Scale (CFG)")
# 控件5: Slider (滑块)
inp_steps = gr.Slider(minimum=10, maximum=100, step=1, value=30, label="Inference Steps")
# 提交按钮
btn_generate = gr.Button("Generate Image", variant="primary")
with gr.Column(scale=1):
# 输出区域
out_prompt = gr.Textbox(label="Generated Prompt", interactive=False) # 输出文本框不可编辑
out_image = gr.Image(label="Generated Image", type="pil") # 输出图像
# 设置按钮点击事件
btn_generate.click(
fn=process_input,
inputs=[inp_text, inp_audio, inp_style, inp_quality, inp_neg_prompt, inp_guidance, inp_steps],
outputs=[out_prompt, out_image]
)
# (可选) 当用户录音后,可以自动清空文本框,以明确优先使用语音
if asr_pipeline:
def clear_text_on_audio(audio_data):
if audio_data is not None:
return "" # 返回空字符串清空文本框
return gr.update() # 否则不改变文本框内容 (gr.update()是占位符)
inp_audio.change(fn=clear_text_on_audio, inputs=inp_audio, outputs=inp_text)
# ---- 启动应用 ----
if __name__ == "__main__":
# 设置Hugging Face Hub Token (如果需要从私有仓库加载模型)
# from huggingface_hub import login
# login("YOUR_HF_TOKEN") # 在本地运行时取消注释并替换
# 在Hugging Face Spaces上运行时,端口通常由平台管理
# share=True 会创建一个公共链接 (如果在本地运行需要)
demo.launch(share=False)