Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline, set_seed
|
4 |
+
from diffusers import StableDiffusionPipeline
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
|
8 |
+
# ---- 配置与模型加载 (在应用启动时加载一次) ----
|
9 |
+
|
10 |
+
# 检查是否有可用的GPU,否则使用CPU
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
print(f"Using device: {device}")
|
13 |
+
|
14 |
+
# 1. 语音转文本模型 (Whisper) - 加分项
|
15 |
+
asr_pipeline = None
|
16 |
+
try:
|
17 |
+
print("Loading ASR pipeline (Whisper)...")
|
18 |
+
# 使用较小的模型以节省资源,可根据需要替换 openai/whisper-medium 或 large
|
19 |
+
# 在不需要GPU的应用部分可以强制使用CPU
|
20 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device if device == "cuda" else -1) # whisper在CPU上也可以运行
|
21 |
+
print("ASR pipeline loaded.")
|
22 |
+
except Exception as e:
|
23 |
+
print(f"Could not load ASR pipeline: {e}. Voice input will be disabled.")
|
24 |
+
|
25 |
+
# 2. 提示词增强模型 (LLM) - Step 1
|
26 |
+
prompt_enhancer_pipeline = None
|
27 |
+
try:
|
28 |
+
print("Loading Prompt Enhancer pipeline (GPT-2)...")
|
29 |
+
# 使用 GPT-2 作为示例,实际应用中建议使用更强大的指令微调模型如 Mistral 或 Llama
|
30 |
+
# 注意:GPT-2 可能不会生成特别高质量的SD提示词,这里仅作结构演示
|
31 |
+
# 如果资源允许,可以替换为 'mistralai/Mistral-7B-Instruct-v0.1' 等,但需要更多内存/GPU
|
32 |
+
prompt_enhancer_pipeline = pipeline("text-generation", model="gpt2", device=device if device == "cuda" else -1) # text-generation在CPU上也可以运行
|
33 |
+
print("Prompt Enhancer pipeline loaded.")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Could not load Prompt Enhancer pipeline: {e}. Prompt enhancement might fail.")
|
36 |
+
|
37 |
+
# 3. 文本到图像模型 (Stable Diffusion) - Step 2
|
38 |
+
image_generator_pipe = None
|
39 |
+
try:
|
40 |
+
print("Loading Stable Diffusion pipeline (v1.5)...")
|
41 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
42 |
+
image_generator_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16 if device == "cuda" else torch.float32)
|
43 |
+
image_generator_pipe = image_generator_pipe.to(device)
|
44 |
+
# 如果内存不足,可以启用CPU offloading (需要 accelerate库)
|
45 |
+
# image_generator_pipe.enable_model_cpu_offload()
|
46 |
+
print("Stable Diffusion pipeline loaded.")
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Could not load Stable Diffusion pipeline: {e}. Image generation will fail.")
|
49 |
+
# 如果模型加载失败,创建一个虚拟对象以避免后续代码出错
|
50 |
+
class DummyPipe:
|
51 |
+
def __call__(self, *args, **kwargs):
|
52 |
+
# 返回一个占位符错误信息或图像
|
53 |
+
raise RuntimeError(f"Stable Diffusion model failed to load: {e}")
|
54 |
+
image_generator_pipe = DummyPipe()
|
55 |
+
|
56 |
+
|
57 |
+
# ---- 核心功能函数 ----
|
58 |
+
|
59 |
+
# Step 1: Prompt-to-Prompt
|
60 |
+
def enhance_prompt(short_prompt, style_modifier="cinematic", quality_boost="photorealistic, highly detailed"):
|
61 |
+
"""使用LLM增强简短描述"""
|
62 |
+
if not prompt_enhancer_pipeline:
|
63 |
+
return f"[Error: LLM not loaded] Original prompt: {short_prompt}"
|
64 |
+
if not short_prompt:
|
65 |
+
return "[Error: Input description is empty]"
|
66 |
+
|
67 |
+
# 构建给LLM的指令
|
68 |
+
# 注意:这个指令对GPT-2来说可能太复杂,对Mistral等更有效
|
69 |
+
input_text = (
|
70 |
+
f"Generate a detailed and vivid prompt for an AI image generator based on the following description. "
|
71 |
+
f"Incorporate the style '{style_modifier}' and quality boost '{quality_boost}'. "
|
72 |
+
f"Focus on visual details, lighting, composition, and mood. "
|
73 |
+
f"Description: \"{short_prompt}\"\n\n"
|
74 |
+
f"Detailed Prompt:"
|
75 |
+
)
|
76 |
+
|
77 |
+
try:
|
78 |
+
# 设置种子以获得可复现的(某种程度上的)结果
|
79 |
+
set_seed(int(time.time()))
|
80 |
+
# max_length 控制生成文本的总长度 (包括输入)
|
81 |
+
# num_return_sequences 返回多少个结果
|
82 |
+
# temperature 控制随机性,较低的值更保守
|
83 |
+
# no_repeat_ngram_size 避免重复短语
|
84 |
+
outputs = prompt_enhancer_pipeline(
|
85 |
+
input_text,
|
86 |
+
max_length=150, # 限制输出长度,避免过长
|
87 |
+
num_return_sequences=1,
|
88 |
+
temperature=0.7,
|
89 |
+
no_repeat_ngram_size=2,
|
90 |
+
pad_token_id=prompt_enhancer_pipeline.tokenizer.eos_token_id # 避免padding warning
|
91 |
+
)
|
92 |
+
generated_text = outputs[0]['generated_text']
|
93 |
+
|
94 |
+
# 从LLM的完整输出中提取增强后的提示词部分
|
95 |
+
# 简单方法:取 "Detailed Prompt:" 之后的内容
|
96 |
+
enhanced = generated_text.split("Detailed Prompt:")[-1].strip()
|
97 |
+
# 进一步清理可能包含的原始输入或指令痕迹
|
98 |
+
if short_prompt in enhanced[:len(short_prompt)+5]: # 如果开头包含原始输入
|
99 |
+
enhanced = enhanced.replace(short_prompt, "", 1).strip(' ,"')
|
100 |
+
|
101 |
+
# 添加基础的风格和质量词,如果LLM没有包含的话
|
102 |
+
if style_modifier not in enhanced:
|
103 |
+
enhanced += f", {style_modifier}"
|
104 |
+
if quality_boost not in enhanced:
|
105 |
+
enhanced += f", {quality_boost}"
|
106 |
+
|
107 |
+
return enhanced
|
108 |
+
|
109 |
+
except Exception as e:
|
110 |
+
print(f"Error during prompt enhancement: {e}")
|
111 |
+
return f"[Error: Prompt enhancement failed] Original prompt: {short_prompt}"
|
112 |
+
|
113 |
+
# Step 2: Prompt-to-Image
|
114 |
+
def generate_image(prompt, negative_prompt, guidance_scale, num_inference_steps):
|
115 |
+
"""使用Stable Diffusion生成图像"""
|
116 |
+
if not isinstance(image_generator_pipe, StableDiffusionPipeline):
|
117 |
+
raise gr.Error(f"Stable Diffusion model is not available. Load error: {image_generator_pipe}") # 使用gr.Error在UI上显示错误
|
118 |
+
if not prompt or "[Error:" in prompt:
|
119 |
+
raise gr.Error("Cannot generate image due to invalid or missing prompt.")
|
120 |
+
|
121 |
+
print(f"Generating image for prompt: {prompt}")
|
122 |
+
print(f"Negative prompt: {negative_prompt}")
|
123 |
+
print(f"Guidance scale: {guidance_scale}, Steps: {num_inference_steps}")
|
124 |
+
|
125 |
+
try:
|
126 |
+
# 设置随机种子
|
127 |
+
generator = torch.Generator(device=device).manual_seed(int(time.time()))
|
128 |
+
|
129 |
+
# 执行推理
|
130 |
+
with torch.inference_mode(): # 节省内存
|
131 |
+
image = image_generator_pipe(
|
132 |
+
prompt=prompt,
|
133 |
+
negative_prompt=negative_prompt,
|
134 |
+
guidance_scale=float(guidance_scale),
|
135 |
+
num_inference_steps=int(num_inference_steps),
|
136 |
+
generator=generator
|
137 |
+
).images[0]
|
138 |
+
print("Image generated successfully.")
|
139 |
+
return image
|
140 |
+
except Exception as e:
|
141 |
+
print(f"Error during image generation: {e}")
|
142 |
+
# 将底层错误传递给 Gradio,使其能在 UI 中显示
|
143 |
+
raise gr.Error(f"Image generation failed: {e}")
|
144 |
+
|
145 |
+
|
146 |
+
# Bonus: Voice-to-Text
|
147 |
+
def transcribe_audio(audio_file_path):
|
148 |
+
"""将音频文件转录为文本"""
|
149 |
+
if not asr_pipeline:
|
150 |
+
return "[Error: ASR model not loaded]", "" # 返回错误信息和空路径
|
151 |
+
if audio_file_path is None:
|
152 |
+
return "", "" # 没有音频输入
|
153 |
+
|
154 |
+
print(f"Transcribing audio file: {audio_file_path}")
|
155 |
+
try:
|
156 |
+
# 转录音频
|
157 |
+
transcription = asr_pipeline(audio_file_path)["text"]
|
158 |
+
print(f"Transcription result: {transcription}")
|
159 |
+
return transcription, audio_file_path # 返回文本和路径(可能用于显示)
|
160 |
+
except Exception as e:
|
161 |
+
print(f"Error during audio transcription: {e}")
|
162 |
+
return f"[Error: Transcription failed: {e}]", audio_file_path
|
163 |
+
|
164 |
+
|
165 |
+
# ---- Gradio 应用流程 ----
|
166 |
+
|
167 |
+
def process_input(input_text, audio_file, style_choice, quality_choice, neg_prompt, guidance, steps):
|
168 |
+
"""处理输入(文本或语音),生成提示词和图像"""
|
169 |
+
final_text_input = ""
|
170 |
+
transcription_source = "" # 用于标记来源
|
171 |
+
|
172 |
+
# 优先使用文本框输入
|
173 |
+
if input_text and input_text.strip():
|
174 |
+
final_text_input = input_text.strip()
|
175 |
+
transcription_source = " (from text input)"
|
176 |
+
# 如果文本框为空,且有音频文件,则使用语音输入
|
177 |
+
elif audio_file is not None:
|
178 |
+
transcribed_text, _ = transcribe_audio(audio_file)
|
179 |
+
if transcribed_text and "[Error:" not in transcribed_text:
|
180 |
+
final_text_input = transcribed_text
|
181 |
+
transcription_source = " (from audio input)"
|
182 |
+
elif "[Error:" in transcribed_text:
|
183 |
+
# 如果语音识别出错,直接返回错误信息
|
184 |
+
return transcribed_text, None # 返回错误提示,不生成图像
|
185 |
+
else:
|
186 |
+
# 音频为空或识别为空
|
187 |
+
return "[Error: Please provide input via text or voice]", None
|
188 |
+
else:
|
189 |
+
# 没有有效输入
|
190 |
+
return "[Error: Please provide input via text or voice]", None
|
191 |
+
|
192 |
+
print(f"Using input: '{final_text_input}'{transcription_source}")
|
193 |
+
|
194 |
+
# Step 1: Enhance prompt
|
195 |
+
enhanced_prompt = enhance_prompt(final_text_input, style_modifier=style_choice, quality_boost=quality_choice)
|
196 |
+
print(f"Enhanced prompt: {enhanced_prompt}")
|
197 |
+
|
198 |
+
# Step 2: Generate image (如果提示词增强成功)
|
199 |
+
generated_image = None
|
200 |
+
if "[Error:" not in enhanced_prompt:
|
201 |
+
try:
|
202 |
+
generated_image = generate_image(enhanced_prompt, neg_prompt, guidance, steps)
|
203 |
+
except gr.Error as e:
|
204 |
+
# 如果 generate_image 抛出 gr.Error,将其信息作为 enhanced_prompt 返回给UI
|
205 |
+
enhanced_prompt = f"{enhanced_prompt}\n\n[Image Generation Error: {e}]"
|
206 |
+
# 不再尝试显示图片
|
207 |
+
except Exception as e:
|
208 |
+
# 捕获其他意外错误
|
209 |
+
enhanced_prompt = f"{enhanced_prompt}\n\n[Unexpected Image Generation Error: {e}]"
|
210 |
+
|
211 |
+
# 返回结果给Gradio界面
|
212 |
+
return enhanced_prompt, generated_image
|
213 |
+
|
214 |
+
|
215 |
+
# ---- Gradio 界面构建 (Step 3: Controls & Step 4: Layout) ----
|
216 |
+
|
217 |
+
# 定义可选的风格和质量提升选项 (用于Dropdown/Radio)
|
218 |
+
style_options = ["cinematic", "photorealistic", "anime", "fantasy art", "cyberpunk", "steampunk", "watercolor"]
|
219 |
+
quality_options = ["highly detailed", "sharp focus", "intricate details", "4k", "masterpiece", "best quality"]
|
220 |
+
|
221 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
222 |
+
gr.Markdown("# AI Image Generator: From Idea to Image")
|
223 |
+
gr.Markdown("Enter a short description (or use voice input), and the app will enhance it into a detailed prompt and generate an image using Stable Diffusion.")
|
224 |
+
|
225 |
+
with gr.Row():
|
226 |
+
with gr.Column(scale=1):
|
227 |
+
# 输入区域
|
228 |
+
inp_text = gr.Textbox(label="Enter short description here", placeholder="e.g., A magical treehouse in the sky")
|
229 |
+
|
230 |
+
# 加分项:语音输入控件
|
231 |
+
inp_audio = gr.Audio(sources=["microphone"], type="filepath", label="Or record your idea (clears text box if used)", visible=asr_pipeline is not None) # 只有ASR加载成功才显示
|
232 |
+
|
233 |
+
# Step 3: 使用不同控件
|
234 |
+
# 控件1: Dropdown (下拉菜单)
|
235 |
+
inp_style = gr.Dropdown(label="Choose Base Style", choices=style_options, value="cinematic")
|
236 |
+
|
237 |
+
# 控件2: Radio (单选框) - 也可以用 CheckboxGroup 实现多选
|
238 |
+
inp_quality = gr.Radio(label="Quality Boost", choices=quality_options, value="highly detailed")
|
239 |
+
|
240 |
+
# 控件3: Textbox (用于Negative Prompt)
|
241 |
+
inp_neg_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="e.g., blurry, low quality, text, watermark")
|
242 |
+
|
243 |
+
# 控件4: Slider (滑块)
|
244 |
+
inp_guidance = gr.Slider(minimum=1.0, maximum=20.0, step=0.5, value=7.5, label="Guidance Scale (CFG)")
|
245 |
+
|
246 |
+
# 控件5: Slider (滑块)
|
247 |
+
inp_steps = gr.Slider(minimum=10, maximum=100, step=1, value=30, label="Inference Steps")
|
248 |
+
|
249 |
+
# 提交按钮
|
250 |
+
btn_generate = gr.Button("Generate Image", variant="primary")
|
251 |
+
|
252 |
+
with gr.Column(scale=1):
|
253 |
+
# 输出区域
|
254 |
+
out_prompt = gr.Textbox(label="Generated Prompt", interactive=False) # 输出文本框不可编辑
|
255 |
+
out_image = gr.Image(label="Generated Image", type="pil") # 输出图像
|
256 |
+
|
257 |
+
# 设置按钮点击事件
|
258 |
+
btn_generate.click(
|
259 |
+
fn=process_input,
|
260 |
+
inputs=[inp_text, inp_audio, inp_style, inp_quality, inp_neg_prompt, inp_guidance, inp_steps],
|
261 |
+
outputs=[out_prompt, out_image]
|
262 |
+
)
|
263 |
+
|
264 |
+
# (可选) 当用户录音后,可以自动清空文本框,以明确优先使用语音
|
265 |
+
if asr_pipeline:
|
266 |
+
def clear_text_on_audio(audio_data):
|
267 |
+
if audio_data is not None:
|
268 |
+
return "" # 返回空字符串清空文本框
|
269 |
+
return gr.update() # 否则不改变文本框内容 (gr.update()是占位符)
|
270 |
+
inp_audio.change(fn=clear_text_on_audio, inputs=inp_audio, outputs=inp_text)
|
271 |
+
|
272 |
+
|
273 |
+
# ---- 启动应用 ----
|
274 |
+
if __name__ == "__main__":
|
275 |
+
# 设置Hugging Face Hub Token (如果需要从私有仓库加载模型)
|
276 |
+
# from huggingface_hub import login
|
277 |
+
# login("YOUR_HF_TOKEN") # 在本地运行时取消注释并替换
|
278 |
+
|
279 |
+
# 在Hugging Face Spaces上运行时,端口通常由平台管理
|
280 |
+
# share=True 会创建一个公共链接 (如果在本地运行需要)
|
281 |
+
demo.launch(share=False)
|