|
|
|
"""Kopie von HW1 (more instructed).ipynb |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1BrX2Zy737ji-Lbb2evMV2P-WfzvTniHj |
|
""" |
|
|
|
!pip install git+https://github.com/kwang2049/nlp4web-codebase.git |
|
!git clone https://github.com/kwang2049/nlp4web-codebase.git |
|
!pip install gradio |
|
|
|
"""## Pre-requisite code |
|
|
|
The code within this section will be used in the tasks. Please do not change these code lines. |
|
|
|
### SciQ loading and counting |
|
""" |
|
|
|
from dataclasses import dataclass |
|
import pickle |
|
import os |
|
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar |
|
from nlp4web_codebase.ir.data_loaders.dm import Document |
|
from collections import Counter |
|
import tqdm |
|
import re |
|
import nltk |
|
nltk.download("stopwords", quiet=True) |
|
from nltk.corpus import stopwords as nltk_stopwords |
|
|
|
LANGUAGE = "english" |
|
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall |
|
stopwords = set(nltk_stopwords.words(LANGUAGE)) |
|
|
|
|
|
def word_splitting(text: str) -> List[str]: |
|
return word_splitter(text.lower()) |
|
|
|
def lemmatization(words: List[str]) -> List[str]: |
|
return words |
|
|
|
def simple_tokenize(text: str) -> List[str]: |
|
words = word_splitting(text) |
|
tokenized = list(filter(lambda w: w not in stopwords, words)) |
|
tokenized = lemmatization(tokenized) |
|
return tokenized |
|
|
|
T = TypeVar("T", bound="InvertedIndex") |
|
|
|
@dataclass |
|
class PostingList: |
|
term: str |
|
docid_postings: List[int] |
|
tweight_postings: List[float] |
|
|
|
|
|
@dataclass |
|
class InvertedIndex: |
|
posting_lists: List[PostingList] |
|
vocab: Dict[str, int] |
|
cid2docid: Dict[str, int] |
|
collection_ids: List[str] |
|
doc_texts: Optional[List[str]] = None |
|
|
|
def save(self, output_dir: str) -> None: |
|
os.makedirs(output_dir, exist_ok=True) |
|
with open(os.path.join(output_dir, "index.pkl"), "wb") as f: |
|
pickle.dump(self, f) |
|
|
|
@classmethod |
|
def from_saved(cls: Type[T], saved_dir: str) -> T: |
|
index = cls( |
|
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None |
|
) |
|
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f: |
|
index = pickle.load(f) |
|
return index |
|
|
|
|
|
|
|
@dataclass |
|
class Counting: |
|
posting_lists: List[PostingList] |
|
vocab: Dict[str, int] |
|
cid2docid: Dict[str, int] |
|
collection_ids: List[str] |
|
dfs: List[int] |
|
dls: List[int] |
|
avgdl: float |
|
nterms: int |
|
doc_texts: Optional[List[str]] = None |
|
|
|
def run_counting( |
|
documents: Iterable[Document], |
|
tokenize_fn: Callable[[str], List[str]] = simple_tokenize, |
|
store_raw: bool = True, |
|
ndocs: Optional[int] = None, |
|
show_progress_bar: bool = True, |
|
) -> Counting: |
|
"""Counting TFs, DFs, doc_lengths, etc.""" |
|
posting_lists: List[PostingList] = [] |
|
vocab: Dict[str, int] = {} |
|
cid2docid: Dict[str, int] = {} |
|
collection_ids: List[str] = [] |
|
dfs: List[int] = [] |
|
dls: List[int] = [] |
|
nterms: int = 0 |
|
doc_texts: Optional[List[str]] = [] |
|
for doc in tqdm.tqdm( |
|
documents, |
|
desc="Counting", |
|
total=ndocs, |
|
disable=not show_progress_bar, |
|
): |
|
if doc.collection_id in cid2docid: |
|
continue |
|
collection_ids.append(doc.collection_id) |
|
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid)) |
|
toks = tokenize_fn(doc.text) |
|
tok2tf = Counter(toks) |
|
dls.append(sum(tok2tf.values())) |
|
for tok, tf in tok2tf.items(): |
|
nterms += tf |
|
tid = vocab.get(tok, None) |
|
if tid is None: |
|
posting_lists.append( |
|
PostingList(term=tok, docid_postings=[], tweight_postings=[]) |
|
) |
|
tid = vocab.setdefault(tok, len(vocab)) |
|
posting_lists[tid].docid_postings.append(docid) |
|
posting_lists[tid].tweight_postings.append(tf) |
|
if tid < len(dfs): |
|
dfs[tid] += 1 |
|
else: |
|
dfs.append(0) |
|
if store_raw: |
|
doc_texts.append(doc.text) |
|
else: |
|
doc_texts = None |
|
return Counting( |
|
posting_lists=posting_lists, |
|
vocab=vocab, |
|
cid2docid=cid2docid, |
|
collection_ids=collection_ids, |
|
dfs=dfs, |
|
dls=dls, |
|
avgdl=sum(dls) / len(dls), |
|
nterms=nterms, |
|
doc_texts=doc_texts, |
|
) |
|
|
|
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq |
|
sciq = load_sciq() |
|
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus)) |
|
|
|
"""### BM25 Index""" |
|
|
|
from __future__ import annotations |
|
from dataclasses import asdict, dataclass |
|
import math |
|
import os |
|
from typing import Iterable, List, Optional, Type |
|
import tqdm |
|
from nlp4web_codebase.ir.data_loaders.dm import Document |
|
|
|
|
|
@dataclass |
|
class BM25Index(InvertedIndex): |
|
|
|
@staticmethod |
|
def tokenize(text: str) -> List[str]: |
|
return simple_tokenize(text) |
|
|
|
@staticmethod |
|
def cache_term_weights( |
|
posting_lists: List[PostingList], |
|
total_docs: int, |
|
avgdl: float, |
|
dfs: List[int], |
|
dls: List[int], |
|
k1: float, |
|
b: float, |
|
) -> None: |
|
"""Compute term weights and caching""" |
|
|
|
N = total_docs |
|
for tid, posting_list in enumerate( |
|
tqdm.tqdm(posting_lists, desc="Regularizing TFs") |
|
): |
|
idf = BM25Index.calc_idf(df=dfs[tid], N=N) |
|
for i in range(len(posting_list.docid_postings)): |
|
docid = posting_list.docid_postings[i] |
|
tf = posting_list.tweight_postings[i] |
|
dl = dls[docid] |
|
regularized_tf = BM25Index.calc_regularized_tf( |
|
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b |
|
) |
|
posting_list.tweight_postings[i] = regularized_tf * idf |
|
|
|
@staticmethod |
|
def calc_regularized_tf( |
|
tf: int, dl: float, avgdl: float, k1: float, b: float |
|
) -> float: |
|
return tf / (tf + k1 * (1 - b + b * dl / avgdl)) |
|
|
|
@staticmethod |
|
def calc_idf(df: int, N: int): |
|
return math.log(1 + (N - df + 0.5) / (df + 0.5)) |
|
|
|
@classmethod |
|
def build_from_documents( |
|
cls: Type[BM25Index], |
|
documents: Iterable[Document], |
|
store_raw: bool = True, |
|
output_dir: Optional[str] = None, |
|
ndocs: Optional[int] = None, |
|
show_progress_bar: bool = True, |
|
k1: float = 0.9, |
|
b: float = 0.4, |
|
) -> BM25Index: |
|
|
|
counting = run_counting( |
|
documents=documents, |
|
tokenize_fn=BM25Index.tokenize, |
|
store_raw=store_raw, |
|
ndocs=ndocs, |
|
show_progress_bar=show_progress_bar, |
|
) |
|
|
|
|
|
posting_lists = counting.posting_lists |
|
total_docs = len(counting.cid2docid) |
|
BM25Index.cache_term_weights( |
|
posting_lists=posting_lists, |
|
total_docs=total_docs, |
|
avgdl=counting.avgdl, |
|
dfs=counting.dfs, |
|
dls=counting.dls, |
|
k1=k1, |
|
b=b, |
|
) |
|
|
|
|
|
index = BM25Index( |
|
posting_lists=posting_lists, |
|
vocab=counting.vocab, |
|
cid2docid=counting.cid2docid, |
|
collection_ids=counting.collection_ids, |
|
doc_texts=counting.doc_texts, |
|
) |
|
return index |
|
|
|
bm25_index = BM25Index.build_from_documents( |
|
documents=iter(sciq.corpus), |
|
ndocs=12160, |
|
show_progress_bar=True, |
|
) |
|
bm25_index.save("output/bm25_index") |
|
!ls |
|
|
|
"""### BM25 Retriever""" |
|
|
|
from nlp4web_codebase.ir.models import BaseRetriever |
|
from typing import Type |
|
from abc import abstractmethod |
|
|
|
|
|
class BaseInvertedIndexRetriever(BaseRetriever): |
|
|
|
@property |
|
@abstractmethod |
|
def index_class(self) -> Type[InvertedIndex]: |
|
pass |
|
|
|
def __init__(self, index_dir: str) -> None: |
|
self.index = self.index_class.from_saved(index_dir) |
|
|
|
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]: |
|
toks = self.index.tokenize(query) |
|
target_docid = self.index.cid2docid[cid] |
|
term_weights = {} |
|
for tok in toks: |
|
if tok not in self.index.vocab: |
|
continue |
|
tid = self.index.vocab[tok] |
|
posting_list = self.index.posting_lists[tid] |
|
for docid, tweight in zip( |
|
posting_list.docid_postings, posting_list.tweight_postings |
|
): |
|
if docid == target_docid: |
|
term_weights[tok] = tweight |
|
break |
|
return term_weights |
|
|
|
def score(self, query: str, cid: str) -> float: |
|
return sum(self.get_term_weights(query=query, cid=cid).values()) |
|
|
|
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]: |
|
toks = self.index.tokenize(query) |
|
docid2score: Dict[int, float] = {} |
|
for tok in toks: |
|
if tok not in self.index.vocab: |
|
continue |
|
tid = self.index.vocab[tok] |
|
posting_list = self.index.posting_lists[tid] |
|
for docid, tweight in zip( |
|
posting_list.docid_postings, posting_list.tweight_postings |
|
): |
|
docid2score.setdefault(docid, 0) |
|
docid2score[docid] += tweight |
|
docid2score = dict( |
|
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk] |
|
) |
|
return { |
|
self.index.collection_ids[docid]: score |
|
for docid, score in docid2score.items() |
|
} |
|
|
|
|
|
class BM25Retriever(BaseInvertedIndexRetriever): |
|
|
|
@property |
|
def index_class(self) -> Type[BM25Index]: |
|
return BM25Index |
|
|
|
bm25_retriever = BM25Retriever(index_dir="output/bm25_index") |
|
bm25_retriever.retrieve("What type of diseases occur when the immune system attacks normal body cells?") |
|
|
|
"""# TASK1: tune b and k1 (4 points) |
|
|
|
Tune b and k1 on the **dev** split of SciQ using the metric MAP@10. The evaluation function (`evalaute_map`) is provided. Record the values in `plots_k1` and `plots_b`. Do it in a greedy manner: as the influence from b is larger, please first tune b (with k1 fixed to the default value 0.9) and use the best value of b to further tune k1. |
|
|
|
$${\displaystyle {\text{score}}(D,Q)=\sum _{i=1}^{n}{\text{IDF}}(q_{i})\cdot {\frac {f(q_{i},D)\cdot (k_{1}+1)}{f(q_{i},D)+k_{1}\cdot \left(1-b+b\cdot {\frac {|D|}{\text{avgdl}}}\right)}}}$$ |
|
""" |
|
|
|
from nlp4web_codebase.ir.data_loaders import Split |
|
import pytrec_eval |
|
|
|
|
|
def evaluate_map(rankings: Dict[str, Dict[str, float]], split=Split.dev) -> float: |
|
metric = "map_cut_10" |
|
qrels = sciq.get_qrels_dict(split) |
|
evaluator = pytrec_eval.RelevanceEvaluator(sciq.get_qrels_dict(split), (metric,)) |
|
qps = evaluator.evaluate(rankings) |
|
return float(np.mean([qp[metric] for qp in qps.values()])) |
|
|
|
"""Example of using the pre-requisite code:""" |
|
|
|
|
|
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq |
|
sciq = load_sciq() |
|
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus)) |
|
|
|
|
|
bm25_index = BM25Index.build_from_documents( |
|
documents=iter(sciq.corpus), |
|
ndocs=12160, |
|
show_progress_bar=True |
|
) |
|
bm25_index.save("output/bm25_index") |
|
|
|
|
|
bm25_retriever = BM25Retriever(index_dir="output/bm25_index") |
|
print(bm25_retriever.retrieve("What type of diseases occur when the immune system attacks normal body cells?")) |
|
|
|
plots_b: Dict[str, List[float]] = { |
|
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], |
|
"Y": [] |
|
} |
|
plots_k1: Dict[str, List[float]] = { |
|
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0], |
|
"Y": [] |
|
} |
|
|
|
|
|
class MyBMIndex(BM25Index): |
|
|
|
@staticmethod |
|
def calc_regularized_tf( |
|
tf: int, dl: float, avgdl: float, k1: float, b: float |
|
) -> float: |
|
return tf * (k1 + 1) / (tf + k1 * (1 - b + b * (dl / avgdl)**1.5)) |
|
|
|
@staticmethod |
|
def calc_idf(df: int, N: int): |
|
return math.log((N + 1) / (df + 0.5)) + 1 |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus)) |
|
|
|
def get_ranking(k1, b, counting) -> Dict[str, Dict[str, float]]: |
|
|
|
bm25_index = MyBMIndex.build_from_documents( |
|
documents=iter(sciq.corpus), |
|
ndocs=12160, |
|
show_progress_bar=True, |
|
k1=k1, |
|
b=b |
|
) |
|
bm25_index.save("output/bm25_index") |
|
|
|
|
|
bm25_retriever = BM25Retriever(index_dir="output/bm25_index") |
|
query_terms = sciq.get_split_queries(split= Split.dev) |
|
rankings = {} |
|
for query in query_terms: |
|
ranking = bm25_retriever.retrieve(query=query.text) |
|
rankings[query.query_id] = ranking |
|
return rankings |
|
for b in plots_b["X"]: |
|
ranking = get_ranking(0.9, b, counting) |
|
plots_b["Y"].append(evaluate_map(rankings=ranking)) |
|
|
|
max_b = np.max(plots_b["Y"]) |
|
for k1 in plots_k1["X"]: |
|
ranking = get_ranking(k1, max_b, counting) |
|
plots_k1["Y"].append(evaluate_map(rankings=ranking)) |
|
|
|
|
|
|
|
print(plots_k1["Y"][9]) |
|
print(plots_b["Y"][1]) |
|
|
|
|
|
print(plots_k1) |
|
print(plots_b) |
|
|
|
from matplotlib import pyplot as plt |
|
plt.plot(plots_b["X"], plots_b["Y"], label="b") |
|
plt.plot(plots_k1["X"], plots_k1["Y"], label="k1") |
|
plt.ylabel("MAP") |
|
plt.legend() |
|
plt.grid() |
|
plt.show() |
|
|
|
"""Let's check the effectiveness gain on test after this tuning on dev""" |
|
|
|
default_map = 0.7849 |
|
best_b = plots_b["X"][np.argmax(plots_b["Y"])] |
|
best_k1 = plots_k1["X"][np.argmax(plots_k1["Y"])] |
|
bm25_index = BM25Index.build_from_documents( |
|
documents=iter(sciq.corpus), |
|
ndocs=12160, |
|
show_progress_bar=True, |
|
k1=best_k1, |
|
b=best_b |
|
) |
|
bm25_index.save("output/bm25_index") |
|
bm25_retriever = BM25Retriever(index_dir="output/bm25_index") |
|
rankings = {} |
|
for query in sciq.get_split_queries(Split.test): |
|
ranking = bm25_retriever.retrieve(query=query.text) |
|
rankings[query.query_id] = ranking |
|
optimized_map = evaluate_map(rankings, split=Split.test) |
|
print(default_map, optimized_map) |
|
|
|
"""# TASK3: a search-engine demo based on Huggingface space (4 points) |
|
|
|
## TASK3.1: create the gradio app (2 point) |
|
|
|
Create a gradio app to demo the BM25 search engine index on SciQ. The app should have a single input variable for the query (of type `str`) and a single output variable for the returned ranking (of type `List[Hit]` in the code below). Please use the BM25 system with default k1 and b values. |
|
|
|
Hint: it should use a "search" function of signature: |
|
|
|
```python |
|
def search(query: str) -> List[Hit]: |
|
... |
|
``` |
|
""" |
|
|
|
!pip install gradio |
|
|
|
import gradio as gr |
|
from typing import TypedDict |
|
|
|
class Hit(TypedDict): |
|
cid: str |
|
score: float |
|
text: str |
|
|
|
demo: Optional[gr.Interface] = None |
|
return_type = List[Hit] |
|
|
|
|
|
def search_sciq(query: str) -> List[Hit]: |
|
results = bm25_retriever.retrieve(query) |
|
hitlist = [] |
|
for cid, score in results.items(): |
|
index = bm25_retriever.index.cid2docid[cid] |
|
text = bm25_retriever.index.doc_texts[index] |
|
hitlist.append(Hit(cid=cid, score=score, text=text)) |
|
|
|
return hitlist |
|
|
|
demo = gr.Interface( |
|
fn=search_sciq, |
|
inputs="textbox", |
|
outputs="textbox", |
|
description="BM25 Search Engine Demo on SciQ Dataset" |
|
) |
|
|
|
demo.launch() |
|
|
|
|
|
|