File size: 16,782 Bytes
d661944 3f7f963 d661944 3f7f963 d661944 3f7f963 d661944 3f7f963 d661944 3f7f963 d661944 3f7f963 d661944 3f7f963 d661944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# -*- coding: utf-8 -*-
"""Kopie von HW1 (more instructed).ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1BrX2Zy737ji-Lbb2evMV2P-WfzvTniHj
"""
!pip install git+https://github.com/kwang2049/nlp4web-codebase.git
!git clone https://github.com/kwang2049/nlp4web-codebase.git # You can always check the content of this simple codebase at any time
!pip install gradio # we also need this additionally for this homework
"""## Pre-requisite code
The code within this section will be used in the tasks. Please do not change these code lines.
### SciQ loading and counting
"""
from dataclasses import dataclass
import pickle
import os
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
from nlp4web_codebase.ir.data_loaders.dm import Document
from collections import Counter
import tqdm
import re
import nltk
nltk.download("stopwords", quiet=True)
from nltk.corpus import stopwords as nltk_stopwords
LANGUAGE = "english"
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
stopwords = set(nltk_stopwords.words(LANGUAGE))
def word_splitting(text: str) -> List[str]:
return word_splitter(text.lower())
def lemmatization(words: List[str]) -> List[str]:
return words # We ignore lemmatization here for simplicity
def simple_tokenize(text: str) -> List[str]:
words = word_splitting(text)
tokenized = list(filter(lambda w: w not in stopwords, words))
tokenized = lemmatization(tokenized)
return tokenized
T = TypeVar("T", bound="InvertedIndex")
@dataclass
class PostingList:
term: str # The term
docid_postings: List[int] # docid_postings[i] means the docid (int) of the i-th associated posting
tweight_postings: List[float] # tweight_postings[i] means the term weight (float) of the i-th associated posting
@dataclass
class InvertedIndex:
posting_lists: List[PostingList] # docid -> posting_list
vocab: Dict[str, int]
cid2docid: Dict[str, int] # collection_id -> docid
collection_ids: List[str] # docid -> collection_id
doc_texts: Optional[List[str]] = None # docid -> document text
def save(self, output_dir: str) -> None:
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
pickle.dump(self, f)
@classmethod
def from_saved(cls: Type[T], saved_dir: str) -> T:
index = cls(
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
)
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
index = pickle.load(f)
return index
# The output of the counting function:
@dataclass
class Counting:
posting_lists: List[PostingList]
vocab: Dict[str, int]
cid2docid: Dict[str, int]
collection_ids: List[str]
dfs: List[int] # tid -> df
dls: List[int] # docid -> doc length
avgdl: float
nterms: int
doc_texts: Optional[List[str]] = None
def run_counting(
documents: Iterable[Document],
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
store_raw: bool = True, # store the document text in doc_texts
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
) -> Counting:
"""Counting TFs, DFs, doc_lengths, etc."""
posting_lists: List[PostingList] = []
vocab: Dict[str, int] = {}
cid2docid: Dict[str, int] = {}
collection_ids: List[str] = []
dfs: List[int] = [] # tid -> df
dls: List[int] = [] # docid -> doc length
nterms: int = 0
doc_texts: Optional[List[str]] = []
for doc in tqdm.tqdm(
documents,
desc="Counting",
total=ndocs,
disable=not show_progress_bar,
):
if doc.collection_id in cid2docid:
continue
collection_ids.append(doc.collection_id)
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
toks = tokenize_fn(doc.text)
tok2tf = Counter(toks)
dls.append(sum(tok2tf.values()))
for tok, tf in tok2tf.items():
nterms += tf
tid = vocab.get(tok, None)
if tid is None:
posting_lists.append(
PostingList(term=tok, docid_postings=[], tweight_postings=[])
)
tid = vocab.setdefault(tok, len(vocab))
posting_lists[tid].docid_postings.append(docid)
posting_lists[tid].tweight_postings.append(tf)
if tid < len(dfs):
dfs[tid] += 1
else:
dfs.append(0)
if store_raw:
doc_texts.append(doc.text)
else:
doc_texts = None
return Counting(
posting_lists=posting_lists,
vocab=vocab,
cid2docid=cid2docid,
collection_ids=collection_ids,
dfs=dfs,
dls=dls,
avgdl=sum(dls) / len(dls),
nterms=nterms,
doc_texts=doc_texts,
)
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
sciq = load_sciq()
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
"""### BM25 Index"""
from __future__ import annotations
from dataclasses import asdict, dataclass
import math
import os
from typing import Iterable, List, Optional, Type
import tqdm
from nlp4web_codebase.ir.data_loaders.dm import Document
@dataclass
class BM25Index(InvertedIndex):
@staticmethod
def tokenize(text: str) -> List[str]:
return simple_tokenize(text)
@staticmethod
def cache_term_weights(
posting_lists: List[PostingList],
total_docs: int,
avgdl: float,
dfs: List[int],
dls: List[int],
k1: float,
b: float,
) -> None:
"""Compute term weights and caching"""
N = total_docs
for tid, posting_list in enumerate(
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
):
idf = BM25Index.calc_idf(df=dfs[tid], N=N)
for i in range(len(posting_list.docid_postings)):
docid = posting_list.docid_postings[i]
tf = posting_list.tweight_postings[i]
dl = dls[docid]
regularized_tf = BM25Index.calc_regularized_tf(
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
)
posting_list.tweight_postings[i] = regularized_tf * idf
@staticmethod
def calc_regularized_tf(
tf: int, dl: float, avgdl: float, k1: float, b: float
) -> float:
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
@staticmethod
def calc_idf(df: int, N: int):
return math.log(1 + (N - df + 0.5) / (df + 0.5))
@classmethod
def build_from_documents(
cls: Type[BM25Index],
documents: Iterable[Document],
store_raw: bool = True,
output_dir: Optional[str] = None,
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
k1: float = 0.9,
b: float = 0.4,
) -> BM25Index:
# Counting TFs, DFs, doc_lengths, etc.:
counting = run_counting(
documents=documents,
tokenize_fn=BM25Index.tokenize,
store_raw=store_raw,
ndocs=ndocs,
show_progress_bar=show_progress_bar,
)
# Compute term weights and caching:
posting_lists = counting.posting_lists
total_docs = len(counting.cid2docid)
BM25Index.cache_term_weights(
posting_lists=posting_lists,
total_docs=total_docs,
avgdl=counting.avgdl,
dfs=counting.dfs,
dls=counting.dls,
k1=k1,
b=b,
)
# Assembly and save:
index = BM25Index(
posting_lists=posting_lists,
vocab=counting.vocab,
cid2docid=counting.cid2docid,
collection_ids=counting.collection_ids,
doc_texts=counting.doc_texts,
)
return index
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True,
)
bm25_index.save("output/bm25_index")
!ls
"""### BM25 Retriever"""
from nlp4web_codebase.ir.models import BaseRetriever
from typing import Type
from abc import abstractmethod
class BaseInvertedIndexRetriever(BaseRetriever):
@property
@abstractmethod
def index_class(self) -> Type[InvertedIndex]:
pass
def __init__(self, index_dir: str) -> None:
self.index = self.index_class.from_saved(index_dir)
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
toks = self.index.tokenize(query)
target_docid = self.index.cid2docid[cid]
term_weights = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
posting_list = self.index.posting_lists[tid]
for docid, tweight in zip(
posting_list.docid_postings, posting_list.tweight_postings
):
if docid == target_docid:
term_weights[tok] = tweight
break
return term_weights
def score(self, query: str, cid: str) -> float:
return sum(self.get_term_weights(query=query, cid=cid).values())
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
toks = self.index.tokenize(query)
docid2score: Dict[int, float] = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
posting_list = self.index.posting_lists[tid]
for docid, tweight in zip(
posting_list.docid_postings, posting_list.tweight_postings
):
docid2score.setdefault(docid, 0)
docid2score[docid] += tweight
docid2score = dict(
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
)
return {
self.index.collection_ids[docid]: score
for docid, score in docid2score.items()
}
class BM25Retriever(BaseInvertedIndexRetriever):
@property
def index_class(self) -> Type[BM25Index]:
return BM25Index
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
bm25_retriever.retrieve("What type of diseases occur when the immune system attacks normal body cells?")
"""# TASK1: tune b and k1 (4 points)
Tune b and k1 on the **dev** split of SciQ using the metric MAP@10. The evaluation function (`evalaute_map`) is provided. Record the values in `plots_k1` and `plots_b`. Do it in a greedy manner: as the influence from b is larger, please first tune b (with k1 fixed to the default value 0.9) and use the best value of b to further tune k1.
$${\displaystyle {\text{score}}(D,Q)=\sum _{i=1}^{n}{\text{IDF}}(q_{i})\cdot {\frac {f(q_{i},D)\cdot (k_{1}+1)}{f(q_{i},D)+k_{1}\cdot \left(1-b+b\cdot {\frac {|D|}{\text{avgdl}}}\right)}}}$$
"""
from nlp4web_codebase.ir.data_loaders import Split
import pytrec_eval
def evaluate_map(rankings: Dict[str, Dict[str, float]], split=Split.dev) -> float:
metric = "map_cut_10"
qrels = sciq.get_qrels_dict(split)
evaluator = pytrec_eval.RelevanceEvaluator(sciq.get_qrels_dict(split), (metric,))
qps = evaluator.evaluate(rankings)
return float(np.mean([qp[metric] for qp in qps.values()]))
"""Example of using the pre-requisite code:"""
# Loading dataset:
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
sciq = load_sciq()
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
# Building BM25 index and save:
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True
)
bm25_index.save("output/bm25_index")
# Loading index and use BM25 retriever to retrieve:
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
print(bm25_retriever.retrieve("What type of diseases occur when the immune system attacks normal body cells?")) # the ranking
plots_b: Dict[str, List[float]] = {
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
"Y": []
}
plots_k1: Dict[str, List[float]] = {
"X": [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
"Y": []
}
## YOUR_CODE_STARTS_HERE
class MyBMIndex(BM25Index):
@staticmethod
def calc_regularized_tf(
tf: int, dl: float, avgdl: float, k1: float, b: float
) -> float:
return tf * (k1 + 1) / (tf + k1 * (1 - b + b * (dl / avgdl)**1.5))
@staticmethod
def calc_idf(df: int, N: int):
return math.log((N + 1) / (df + 0.5)) + 1
import numpy as np
# Two steps should be involved:
# Step 1. Fix k1 value to the default one 0.9,
# go through all the candidate b values (0, 0.1, ..., 1.0),
# and record in plots_b["Y"] the corresponding performances obtained via evaluate_map;
# Step 2. Fix b to the best one in step 1. and do the same for k1.
# Hint (on using the pre-requisite code):
# - One can use the loaded sciq dataset directly (loaded in the pre-requisite code);
# - One can build bm25_index with `BM25Index.build_from_documents`;
# - One can use BM25Retriever to load the index and perform retrieval on the dev queries
# (dev queries can be obtained via sciq.get_split_queries(Split.dev))
counting = run_counting(documents=iter(sciq.corpus), ndocs=len(sciq.corpus))
def get_ranking(k1, b, counting) -> Dict[str, Dict[str, float]]:
# Building BM25 index and save:
bm25_index = MyBMIndex.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True,
k1=k1,
b=b
)
bm25_index.save("output/bm25_index")
# Loading index and use BM25 retriever to retrieve:
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
query_terms = sciq.get_split_queries(split= Split.dev)
rankings = {}
for query in query_terms:
ranking = bm25_retriever.retrieve(query=query.text)
rankings[query.query_id] = ranking
return rankings
for b in plots_b["X"]:
ranking = get_ranking(0.9, b, counting)
plots_b["Y"].append(evaluate_map(rankings=ranking))
max_b = np.max(plots_b["Y"])
for k1 in plots_k1["X"]:
ranking = get_ranking(k1, max_b, counting)
plots_k1["Y"].append(evaluate_map(rankings=ranking))
## YOU_CODE_ENDS_HERE
## TEST_CASES (should be close to 0.8135637188208616 and 0.7512916099773244)
print(plots_k1["Y"][9])
print(plots_b["Y"][1])
## RESULT_CHECKING_POINT
print(plots_k1)
print(plots_b)
from matplotlib import pyplot as plt
plt.plot(plots_b["X"], plots_b["Y"], label="b")
plt.plot(plots_k1["X"], plots_k1["Y"], label="k1")
plt.ylabel("MAP")
plt.legend()
plt.grid()
plt.show()
"""Let's check the effectiveness gain on test after this tuning on dev"""
default_map = 0.7849
best_b = plots_b["X"][np.argmax(plots_b["Y"])]
best_k1 = plots_k1["X"][np.argmax(plots_k1["Y"])]
bm25_index = BM25Index.build_from_documents(
documents=iter(sciq.corpus),
ndocs=12160,
show_progress_bar=True,
k1=best_k1,
b=best_b
)
bm25_index.save("output/bm25_index")
bm25_retriever = BM25Retriever(index_dir="output/bm25_index")
rankings = {}
for query in sciq.get_split_queries(Split.test): # note this is now on test
ranking = bm25_retriever.retrieve(query=query.text)
rankings[query.query_id] = ranking
optimized_map = evaluate_map(rankings, split=Split.test) # note this is now on test
print(default_map, optimized_map)
"""# TASK3: a search-engine demo based on Huggingface space (4 points)
## TASK3.1: create the gradio app (2 point)
Create a gradio app to demo the BM25 search engine index on SciQ. The app should have a single input variable for the query (of type `str`) and a single output variable for the returned ranking (of type `List[Hit]` in the code below). Please use the BM25 system with default k1 and b values.
Hint: it should use a "search" function of signature:
```python
def search(query: str) -> List[Hit]:
...
```
"""
!pip install gradio
import gradio as gr
from typing import TypedDict
class Hit(TypedDict):
cid: str
score: float
text: str
demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable
return_type = List[Hit]
## YOUR_CODE_STARTS_HERE
def search_sciq(query: str) -> List[Hit]:
results = bm25_retriever.retrieve(query)
hitlist = []
for cid, score in results.items():
index = bm25_retriever.index.cid2docid[cid]
text = bm25_retriever.index.doc_texts[index]
hitlist.append(Hit(cid=cid, score=score, text=text))
return hitlist
demo = gr.Interface(
fn=search_sciq,
inputs="textbox",
outputs="textbox",
description="BM25 Search Engine Demo on SciQ Dataset"
)
## YOUR_CODE_ENDS_HERE
demo.launch()
|