Spaces:
Running
Running
from dotenv import load_dotenv | |
from replicate.client import Client | |
from transformers import AutoTokenizer # Add this import | |
import gradio as gr | |
import json | |
import time | |
import re | |
import os | |
# CSS styling | |
css = """ | |
.category-legend{display:none} | |
button{height: 60px} | |
""" | |
# Constants | |
MASK_TOKEN = "[MASK]" | |
# Initialize environment and client | |
load_dotenv() | |
replicate = Client(api_token=os.environ.get("REPLICATE_API_TOKEN")) | |
# Load tokenizer for formatting chat template properly | |
tokenizer = AutoTokenizer.from_pretrained( | |
"GSAI-ML/LLaDA-8B-Instruct", trust_remote_code=True | |
) | |
def parse_constraints(constraints_text): | |
"""Parse constraints in format: 'position:word, position:word, ...'""" | |
constraints = {} | |
if not constraints_text: | |
return constraints | |
parts = constraints_text.split(",") | |
for part in parts: | |
if ":" not in part: | |
continue | |
pos_str, word = part.split(":", 1) | |
try: | |
pos = int(pos_str.strip()) | |
word = word.strip() | |
if word and pos >= 0: | |
constraints[pos] = word | |
except ValueError: | |
continue | |
return constraints | |
def format_chat_history(history): | |
"""Format chat history for the LLaDA model""" | |
messages = [] | |
for user_msg, assistant_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: # Skip if None (for the latest user message) | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
return messages | |
def generate_response_with_visualization( | |
messages, | |
gen_length=64, | |
steps=32, | |
constraints=None, | |
temperature=0.5, | |
cfg_scale=0.0, | |
block_length=32, | |
remasking="low_confidence", | |
): | |
"""Generate text using the Replicate API version of LLaDA with visualization""" | |
# Process constraints | |
if constraints is None: | |
constraints = {} | |
constraints_json = json.dumps(constraints) | |
# Format chat using the tokenizer's chat template | |
chat_input = tokenizer.apply_chat_template( | |
messages, add_generation_prompt=True, tokenize=False | |
) | |
# Call Replicate API | |
output = replicate.run( | |
"spuuntries/llada-8b-kcv:e8b3ac0457f822454d662dec90edcac05f6e5947a50b55f92b22aa996acbf780", | |
input={ | |
"steps": steps, | |
"prompt": chat_input, | |
"cfg_scale": cfg_scale, | |
"remasking": remasking, | |
"max_tokens": gen_length, | |
"constraints": constraints_json, | |
"temperature": temperature, | |
"block_length": block_length, | |
"prompt_template": "{prompt}", # Use the already formatted prompt | |
}, | |
wait=False, | |
) | |
# Extract final response and states | |
final_output = output["final_output"] | |
states = output["states"] | |
# Extract only the last assistant response by finding the last occurrence | |
# of the assistant header pattern | |
last_assistant_pattern = r"<\|start_header_id\|>assistant<\|end_header_id\|>\n" | |
last_assistant_match = list(re.finditer(last_assistant_pattern, final_output)) | |
if last_assistant_match: | |
# Get the last match | |
last_match = last_assistant_match[-1] | |
# Start position of the actual content (after the header) | |
start_pos = last_match.end() | |
# Extract everything from this position to the end or until end token | |
end_pattern = r"<\|endoftext\|>|<\|start_header_id\|>" | |
end_match = re.search(end_pattern, final_output[start_pos:]) | |
if end_match: | |
end_pos = start_pos + end_match.start() | |
response_text = final_output[start_pos:end_pos].strip() | |
else: | |
response_text = final_output[start_pos:].strip() | |
else: | |
response_text = "Error: Could not parse the model response." | |
# Process states for visualization | |
visualization_states = [] | |
# Add initial state (all masked) | |
initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)] | |
visualization_states.append(initial_state) | |
for state in states: | |
# Similar parsing for visualization states | |
last_assistant_match = list(re.finditer(last_assistant_pattern, state)) | |
if last_assistant_match: | |
last_match = last_assistant_match[-1] | |
start_pos = last_match.end() | |
tokens_text = state[start_pos:].strip() | |
tokens = tokens_text.split() | |
current_state = [] | |
for token in tokens: | |
if token == "[MASK]": | |
current_state.append((token, "#444444")) # Dark gray for masks | |
else: | |
current_state.append( | |
(token, "#6699CC") | |
) # Light blue for revealed tokens | |
visualization_states.append(current_state) | |
else: | |
# Fallback if we can't parse properly | |
visualization_states.append( | |
[(MASK_TOKEN, "#FF6666")] | |
) # Red mask as error indicator | |
return visualization_states, response_text.replace("<|eot_id|>", "") | |
def create_chatbot_demo(): | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# LLaDA - Large Language Diffusion Model Demo") | |
gr.Markdown( | |
"[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)" | |
) | |
# STATE MANAGEMENT | |
chat_history = gr.State([]) | |
# Current response text box (hidden) | |
current_response = gr.Textbox( | |
label="Current Response", | |
placeholder="The assistant's response will appear here...", | |
lines=3, | |
visible=False, | |
) | |
# UI COMPONENTS | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot_ui = gr.Chatbot(label="Conversation", height=500) | |
# Message input | |
with gr.Group(): | |
with gr.Row(): | |
user_input = gr.Textbox( | |
label="Your Message", | |
placeholder="Type your message here...", | |
show_label=False, | |
) | |
send_btn = gr.Button("Send") | |
constraints_input = gr.Textbox( | |
label="Word Constraints", | |
info="Format: 'position:word, position:word, ...' Example: '0:Once, 5:upon, 10:time'", | |
placeholder="0:Once, 5:upon, 10:time", | |
value="", | |
) | |
with gr.Column(scale=2): | |
output_vis = gr.HighlightedText( | |
label="Denoising Process Visualization", | |
combine_adjacent=False, | |
show_legend=True, | |
) | |
# Advanced generation settings | |
with gr.Accordion("Generation Settings", open=False): | |
with gr.Row(): | |
gen_length = gr.Slider( | |
minimum=16, maximum=128, value=64, step=8, label="Generation Length" | |
) | |
steps = gr.Slider( | |
minimum=8, maximum=128, value=32, step=4, label="Denoising Steps" | |
) | |
with gr.Row(): | |
temperature = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.5, step=0.1, label="Temperature" | |
) | |
cfg_scale = gr.Slider( | |
minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale" | |
) | |
with gr.Row(): | |
block_length = gr.Slider( | |
minimum=8, maximum=128, value=32, step=8, label="Block Length" | |
) | |
remasking_strategy = gr.Radio( | |
choices=["low_confidence", "random"], | |
value="low_confidence", | |
label="Remasking Strategy", | |
) | |
with gr.Row(): | |
visualization_delay = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.05, | |
step=0.01, | |
label="Visualization Delay (seconds)", | |
) | |
# Clear button | |
clear_btn = gr.Button("Clear Conversation") | |
def add_message(history, message, response): | |
"""Add a message pair to the history and return the updated history""" | |
history = history.copy() | |
history.append([message, response]) | |
return history | |
def user_message_submitted( | |
message, history, gen_length, steps, constraints, delay | |
): | |
"""Process a submitted user message""" | |
# Skip empty messages | |
if not message.strip(): | |
# Return current state unchanged | |
history_for_display = history.copy() | |
return history, history_for_display, "", [], "" | |
# Add user message to history | |
history = add_message(history, message, None) | |
# Format for display - temporarily show user message with empty response | |
history_for_display = history.copy() | |
# Clear the input | |
message_out = "" | |
# Return immediately to update UI with user message | |
return history, history_for_display, message_out, [], "" | |
def bot_response( | |
history, | |
gen_length, | |
steps, | |
constraints, | |
delay, | |
temperature, | |
cfg_scale, | |
block_length, | |
remasking, | |
): | |
"""Generate bot response for the latest message""" | |
if not history: | |
return history, [], "" | |
try: | |
# Format all messages except the last one (which has no response yet) | |
messages = format_chat_history(history[:-1]) | |
# Add the last user message | |
messages.append({"role": "user", "content": history[-1][0]}) | |
# Parse constraints | |
parsed_constraints = parse_constraints(constraints) | |
# Generate response with visualization | |
vis_states, response_text = generate_response_with_visualization( | |
messages, | |
gen_length=gen_length, | |
steps=steps, | |
constraints=parsed_constraints, | |
temperature=temperature, | |
cfg_scale=cfg_scale, | |
block_length=block_length, | |
remasking=remasking, | |
) | |
# Update history with the assistant's response | |
history[-1][1] = response_text | |
# Return the initial state immediately | |
yield history, vis_states[0], response_text | |
# Then animate through visualization states | |
for state in vis_states[1:]: | |
time.sleep(delay) | |
yield history, state, response_text | |
except Exception as e: | |
error_msg = f"Error: {str(e)}" | |
print(error_msg) | |
# Show error in visualization | |
error_vis = [(error_msg, "red")] | |
# Don't update history with error | |
yield history, error_vis, error_msg | |
def clear_conversation(): | |
"""Clear the conversation history""" | |
return [], [], "", [] | |
# EVENT HANDLERS | |
# Clear button handler | |
clear_btn.click( | |
fn=clear_conversation, | |
inputs=[], | |
outputs=[chat_history, chatbot_ui, current_response, output_vis], | |
) | |
# User message submission flow (2-step process) | |
# Step 1: Add user message to history and update UI | |
msg_submit = user_input.submit( | |
fn=user_message_submitted, | |
inputs=[ | |
user_input, | |
chat_history, | |
gen_length, | |
steps, | |
constraints_input, | |
visualization_delay, | |
], | |
outputs=[ | |
chat_history, | |
chatbot_ui, | |
user_input, | |
output_vis, | |
current_response, | |
], | |
) | |
# Also connect the send button | |
send_click = send_btn.click( | |
fn=user_message_submitted, | |
inputs=[ | |
user_input, | |
chat_history, | |
gen_length, | |
steps, | |
constraints_input, | |
visualization_delay, | |
], | |
outputs=[ | |
chat_history, | |
chatbot_ui, | |
user_input, | |
output_vis, | |
current_response, | |
], | |
) | |
# Step 2: Generate bot response | |
# This happens after the user message is displayed | |
msg_submit.then( | |
fn=bot_response, | |
inputs=[ | |
chat_history, | |
gen_length, | |
steps, | |
constraints_input, | |
visualization_delay, | |
temperature, | |
cfg_scale, | |
block_length, | |
remasking_strategy, | |
], | |
outputs=[chatbot_ui, output_vis, current_response], | |
) | |
send_click.then( | |
fn=bot_response, | |
inputs=[ | |
chat_history, | |
gen_length, | |
steps, | |
constraints_input, | |
visualization_delay, | |
temperature, | |
cfg_scale, | |
block_length, | |
remasking_strategy, | |
], | |
outputs=[chatbot_ui, output_vis, current_response], | |
) | |
return demo | |
# Launch the demo | |
if __name__ == "__main__": | |
demo = create_chatbot_demo() | |
demo.queue().launch(server_name="0.0.0.0") | |