File size: 13,981 Bytes
6f75aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from dotenv import load_dotenv
from replicate.client import Client
from transformers import AutoTokenizer  # Add this import

import gradio as gr
import json
import time
import re
import os

# CSS styling
css = """
.category-legend{display:none}
button{height: 60px}
"""

# Constants
MASK_TOKEN = "[MASK]"

# Initialize environment and client
load_dotenv()
replicate = Client(api_token=os.environ.get("REPLICATE_API_TOKEN"))

# Load tokenizer for formatting chat template properly
tokenizer = AutoTokenizer.from_pretrained(
    "GSAI-ML/LLaDA-8B-Instruct", trust_remote_code=True
)


def parse_constraints(constraints_text):
    """Parse constraints in format: 'position:word, position:word, ...'"""
    constraints = {}
    if not constraints_text:
        return constraints

    parts = constraints_text.split(",")
    for part in parts:
        if ":" not in part:
            continue
        pos_str, word = part.split(":", 1)
        try:
            pos = int(pos_str.strip())
            word = word.strip()
            if word and pos >= 0:
                constraints[pos] = word
        except ValueError:
            continue

    return constraints


def format_chat_history(history):
    """Format chat history for the LLaDA model"""
    messages = []
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        if assistant_msg:  # Skip if None (for the latest user message)
            messages.append({"role": "assistant", "content": assistant_msg})

    return messages


def generate_response_with_visualization(
    messages,
    gen_length=64,
    steps=32,
    constraints=None,
    temperature=0.5,
    cfg_scale=0.0,
    block_length=32,
    remasking="low_confidence",
):
    """Generate text using the Replicate API version of LLaDA with visualization"""

    # Process constraints
    if constraints is None:
        constraints = {}
    constraints_json = json.dumps(constraints)

    # Format chat using the tokenizer's chat template
    chat_input = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True, tokenize=False
    )

    # Call Replicate API
    output = replicate.run(
        "spuuntries/llada-8b-kcv:e8b3ac0457f822454d662dec90edcac05f6e5947a50b55f92b22aa996acbf780",
        input={
            "steps": steps,
            "prompt": chat_input,
            "cfg_scale": cfg_scale,
            "remasking": remasking,
            "max_tokens": gen_length,
            "constraints": constraints_json,
            "temperature": temperature,
            "block_length": block_length,
            "prompt_template": "{prompt}",  # Use the already formatted prompt
        },
        wait=False,
    )

    # Extract final response and states
    final_output = output["final_output"]
    states = output["states"]

    # Extract only the last assistant response by finding the last occurrence
    # of the assistant header pattern
    last_assistant_pattern = r"<\|start_header_id\|>assistant<\|end_header_id\|>\n"
    last_assistant_match = list(re.finditer(last_assistant_pattern, final_output))

    if last_assistant_match:
        # Get the last match
        last_match = last_assistant_match[-1]
        # Start position of the actual content (after the header)
        start_pos = last_match.end()
        # Extract everything from this position to the end or until end token
        end_pattern = r"<\|endoftext\|>|<\|start_header_id\|>"
        end_match = re.search(end_pattern, final_output[start_pos:])

        if end_match:
            end_pos = start_pos + end_match.start()
            response_text = final_output[start_pos:end_pos].strip()
        else:
            response_text = final_output[start_pos:].strip()
    else:
        response_text = "Error: Could not parse the model response."

    # Process states for visualization
    visualization_states = []

    # Add initial state (all masked)
    initial_state = [(MASK_TOKEN, "#444444") for _ in range(gen_length)]
    visualization_states.append(initial_state)

    for state in states:
        # Similar parsing for visualization states
        last_assistant_match = list(re.finditer(last_assistant_pattern, state))

        if last_assistant_match:
            last_match = last_assistant_match[-1]
            start_pos = last_match.end()
            tokens_text = state[start_pos:].strip()
            tokens = tokens_text.split()

            current_state = []
            for token in tokens:
                if token == "[MASK]":
                    current_state.append((token, "#444444"))  # Dark gray for masks
                else:
                    current_state.append(
                        (token, "#6699CC")
                    )  # Light blue for revealed tokens

            visualization_states.append(current_state)
        else:
            # Fallback if we can't parse properly
            visualization_states.append(
                [(MASK_TOKEN, "#FF6666")]
            )  # Red mask as error indicator

    return visualization_states, response_text.replace("<|eot_id|>", "")


def create_chatbot_demo():
    with gr.Blocks(css=css) as demo:
        gr.Markdown("# LLaDA - Large Language Diffusion Model Demo")
        gr.Markdown(
            "[model](https://huggingface.co/GSAI-ML/LLaDA-8B-Instruct), [project page](https://ml-gsai.github.io/LLaDA-demo/)"
        )

        # STATE MANAGEMENT
        chat_history = gr.State([])

        # Current response text box (hidden)
        current_response = gr.Textbox(
            label="Current Response",
            placeholder="The assistant's response will appear here...",
            lines=3,
            visible=False,
        )

        # UI COMPONENTS
        with gr.Row():
            with gr.Column(scale=3):
                chatbot_ui = gr.Chatbot(label="Conversation", height=500)

                # Message input
                with gr.Group():
                    with gr.Row():
                        user_input = gr.Textbox(
                            label="Your Message",
                            placeholder="Type your message here...",
                            show_label=False,
                        )
                        send_btn = gr.Button("Send")

                constraints_input = gr.Textbox(
                    label="Word Constraints",
                    info="Format: 'position:word, position:word, ...' Example: '0:Once, 5:upon, 10:time'",
                    placeholder="0:Once, 5:upon, 10:time",
                    value="",
                )
            with gr.Column(scale=2):
                output_vis = gr.HighlightedText(
                    label="Denoising Process Visualization",
                    combine_adjacent=False,
                    show_legend=True,
                )

        # Advanced generation settings
        with gr.Accordion("Generation Settings", open=False):
            with gr.Row():
                gen_length = gr.Slider(
                    minimum=16, maximum=128, value=64, step=8, label="Generation Length"
                )
                steps = gr.Slider(
                    minimum=8, maximum=128, value=32, step=4, label="Denoising Steps"
                )
            with gr.Row():
                temperature = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.5, step=0.1, label="Temperature"
                )
                cfg_scale = gr.Slider(
                    minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="CFG Scale"
                )
            with gr.Row():
                block_length = gr.Slider(
                    minimum=8, maximum=128, value=32, step=8, label="Block Length"
                )
                remasking_strategy = gr.Radio(
                    choices=["low_confidence", "random"],
                    value="low_confidence",
                    label="Remasking Strategy",
                )
            with gr.Row():
                visualization_delay = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.05,
                    step=0.01,
                    label="Visualization Delay (seconds)",
                )

        # Clear button
        clear_btn = gr.Button("Clear Conversation")

        def add_message(history, message, response):
            """Add a message pair to the history and return the updated history"""
            history = history.copy()
            history.append([message, response])
            return history

        def user_message_submitted(
            message, history, gen_length, steps, constraints, delay
        ):
            """Process a submitted user message"""
            # Skip empty messages
            if not message.strip():
                # Return current state unchanged
                history_for_display = history.copy()
                return history, history_for_display, "", [], ""

            # Add user message to history
            history = add_message(history, message, None)

            # Format for display - temporarily show user message with empty response
            history_for_display = history.copy()

            # Clear the input
            message_out = ""

            # Return immediately to update UI with user message
            return history, history_for_display, message_out, [], ""

        def bot_response(
            history,
            gen_length,
            steps,
            constraints,
            delay,
            temperature,
            cfg_scale,
            block_length,
            remasking,
        ):
            """Generate bot response for the latest message"""
            if not history:
                return history, [], ""

            try:
                # Format all messages except the last one (which has no response yet)
                messages = format_chat_history(history[:-1])

                # Add the last user message
                messages.append({"role": "user", "content": history[-1][0]})

                # Parse constraints
                parsed_constraints = parse_constraints(constraints)

                # Generate response with visualization
                vis_states, response_text = generate_response_with_visualization(
                    messages,
                    gen_length=gen_length,
                    steps=steps,
                    constraints=parsed_constraints,
                    temperature=temperature,
                    cfg_scale=cfg_scale,
                    block_length=block_length,
                    remasking=remasking,
                )

                # Update history with the assistant's response
                history[-1][1] = response_text

                # Return the initial state immediately
                yield history, vis_states[0], response_text

                # Then animate through visualization states
                for state in vis_states[1:]:
                    time.sleep(delay)
                    yield history, state, response_text

            except Exception as e:
                error_msg = f"Error: {str(e)}"
                print(error_msg)

                # Show error in visualization
                error_vis = [(error_msg, "red")]

                # Don't update history with error
                yield history, error_vis, error_msg

        def clear_conversation():
            """Clear the conversation history"""
            return [], [], "", []

        # EVENT HANDLERS

        # Clear button handler
        clear_btn.click(
            fn=clear_conversation,
            inputs=[],
            outputs=[chat_history, chatbot_ui, current_response, output_vis],
        )

        # User message submission flow (2-step process)
        # Step 1: Add user message to history and update UI
        msg_submit = user_input.submit(
            fn=user_message_submitted,
            inputs=[
                user_input,
                chat_history,
                gen_length,
                steps,
                constraints_input,
                visualization_delay,
            ],
            outputs=[
                chat_history,
                chatbot_ui,
                user_input,
                output_vis,
                current_response,
            ],
        )

        # Also connect the send button
        send_click = send_btn.click(
            fn=user_message_submitted,
            inputs=[
                user_input,
                chat_history,
                gen_length,
                steps,
                constraints_input,
                visualization_delay,
            ],
            outputs=[
                chat_history,
                chatbot_ui,
                user_input,
                output_vis,
                current_response,
            ],
        )

        # Step 2: Generate bot response
        # This happens after the user message is displayed
        msg_submit.then(
            fn=bot_response,
            inputs=[
                chat_history,
                gen_length,
                steps,
                constraints_input,
                visualization_delay,
                temperature,
                cfg_scale,
                block_length,
                remasking_strategy,
            ],
            outputs=[chatbot_ui, output_vis, current_response],
        )

        send_click.then(
            fn=bot_response,
            inputs=[
                chat_history,
                gen_length,
                steps,
                constraints_input,
                visualization_delay,
                temperature,
                cfg_scale,
                block_length,
                remasking_strategy,
            ],
            outputs=[chatbot_ui, output_vis, current_response],
        )

    return demo


# Launch the demo
if __name__ == "__main__":
    demo = create_chatbot_demo()
    demo.queue().launch(server_name="0.0.0.0")