Spaces:
Running
Running
import getpass | |
import os | |
import time | |
from pinecone import Pinecone, ServerlessSpec | |
from langchain_pinecone import PineconeVectorStore | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from dotenv import load_dotenv | |
from langchain_core.prompts import PromptTemplate | |
from langchain_openai import ChatOpenAI | |
import re | |
from langchain_core.documents import Document | |
from langchain_community.retrievers import BM25Retriever | |
import requests | |
import psycopg2 | |
from collections import defaultdict | |
from typing import Dict, Any, Optional, List, Tuple | |
import json | |
import logging | |
def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 1000) -> Tuple[List[Document], List[float]]: | |
start = time.time() | |
results = vectorstore.similarity_search_with_score( | |
query, | |
k=k, | |
) | |
documents = [] | |
scores = [] | |
for res, score in results: | |
# check to make sure response isnt too long for context window of 4o-mini | |
if len(res.page_content) > 4000: | |
res.page_content = res.page_content[:4000] | |
documents.append(res) | |
scores.append(score) | |
logging.info(f"Finished Retrieval: {time.time() - start}") | |
return documents, scores | |
def safe_get_json(url: str) -> Optional[Dict]: | |
"""Safely fetch and parse JSON from a URL.""" | |
print("Fetching JSON") | |
try: | |
response = requests.get(url, timeout=10) | |
response.raise_for_status() | |
return response.json() | |
except Exception as e: | |
logging.error(f"Error fetching from {url}: {str(e)}") | |
return None | |
def extract_text_from_json(json_data: Dict) -> str: | |
"""Extract text content from JSON response.""" | |
if not json_data: | |
return "" | |
text_parts = [] | |
# Handle direct text fields | |
text_fields = ["title_info_primary_tsi","abstract_tsi","subject_geographic_sim","genre_basic_ssim","genre_specific_ssim","date_tsim"] | |
for field in text_fields: | |
if field in json_data['data']['attributes'] and json_data['data']['attributes'][field]: | |
# print(json_data[field]) | |
text_parts.append(str(json_data['data']['attributes'][field])) | |
return " ".join(text_parts) if text_parts else "No content available" | |
def rephrase_and_expand_query(query: str, llm: Any) -> str: | |
"""Use LLM to rewrite and expand a query for better alignment with archive metadata.""" | |
prompt_template = PromptTemplate.from_template( | |
""" | |
You are a professional librarian skilled at historical research. | |
Rewrite and expand the query to match metadata tags. Include related terms (synonyms, historical names, places, events). | |
<IMPROVED_QUERY>your improved query here</IMPROVED_QUERY> | |
<EXPANDED_QUERY>your expanded query here</EXPANDED_QUERY> | |
Original Query: {query} | |
""" | |
) | |
prompt = prompt_template.invoke({"query": query}) | |
response = llm.invoke(prompt) | |
improved_match = re.search(r"<IMPROVED_QUERY>(.*?)</IMPROVED_QUERY>", response.content, re.DOTALL) | |
expanded_match = re.search(r"<EXPANDED_QUERY>(.*?)</EXPANDED_QUERY>", response.content, re.DOTALL) | |
improved_query = improved_match.group(1).strip() if improved_match else query | |
expanded_query = expanded_match.group(1).strip() if expanded_match else "" | |
return f"{improved_query} {expanded_query}".strip() | |
def extract_years_from_query(query: str) -> List[str]: | |
"""Extract 4-digit years from query for boosting.""" | |
return re.findall(r"\b(1[5-9]\d{2}|20\d{2}|21\d{2}|22\d{2}|23\d{2})\b", query) | |
weights = { | |
"title_info_primary_tsi": 1.5, # Titles should be prioritized | |
"name_role_tsim": 1.4, # Author/role should be highly weighted | |
"date_tsim": 1.3, # Date should be considered | |
"abstract_tsi": 1.0, # Abstracts are important but less so | |
"note_tsim": 0.8, | |
"subject_geographic_sim": 0.5, | |
"genre_basic_ssim": 0.5, | |
"genre_specific_ssim": 0.5, | |
} | |
def get_metadata(document_ids: List[str]) -> Dict[str, Dict]: | |
""" Fetch metadata from either PostgreSQL or the Commonwealth API, based on config """ | |
if USE_DB_FOR_METADATA: | |
return get_metadata_from_db(document_ids) | |
else: | |
return get_metadata_from_api(document_ids) | |
def get_metadata_from_db(document_ids: List[str]) -> Dict[str, Dict]: | |
""" Fetch metadata from PostgreSQL """ | |
conn = psycopg2.connect( | |
host="127.0.0.1", | |
port="5435", | |
dbname="bpl_metadata", | |
user="postgres", | |
password="MNOF.MzLDjcgzAXu" # Replace with real one or load with dotenv | |
) | |
cur = conn.cursor() | |
sql_query = """ | |
SELECT id, title, abstract, subjects, institution, metadata_url, image_url | |
FROM metadata | |
WHERE id = ANY(%s); | |
""" | |
cur.execute(sql_query, (document_ids,)) | |
results = cur.fetchall() | |
cur.close() | |
conn.close() | |
# Convert results to a dictionary | |
return { | |
row[0]: { | |
"title": row[1], | |
"abstract": row[2], | |
"subjects": row[3], | |
"institution": row[4], | |
"metadata_url": row[5], | |
"image_url": row[6], | |
} | |
for row in results | |
} | |
def get_metadata_from_api(document_ids: List[str]) -> Dict[str, Dict]: | |
""" Fetch metadata from the Commonwealth API """ | |
metadata_dict = {} | |
for doc_id in document_ids: | |
url = f"https://www.digitalcommonwealth.org/search/{doc_id}.json" | |
json_data = safe_get_json(url) | |
if json_data: | |
metadata_dict[doc_id] = extract_text_from_json(json_data) | |
return metadata_dict | |
def rerank(documents: List[Document], query: str) -> List[Document]: | |
"""Rerank documents using BM25 and metadata, boost if year matches.""" | |
if not documents: | |
return [] | |
query_years = extract_years_from_query(query) | |
grouped = defaultdict(list) | |
for doc in documents: | |
source_id = doc.metadata.get("source") | |
if source_id: | |
grouped[source_id].append(doc) | |
full_docs = [] | |
for source_id, chunks in grouped.items(): | |
combined_text = " ".join(chunk.page_content for chunk in chunks if chunk.page_content) | |
metadata = chunks[0].metadata if chunks else {} | |
full_docs.append(Document( | |
page_content=combined_text.strip(), | |
metadata={**metadata, "source": source_id} | |
)) | |
if not full_docs: | |
return [] | |
bm25 = BM25Retriever.from_documents(full_docs, k=len(full_docs)) | |
bm25_ranked_docs = bm25.invoke(query) | |
ranked_docs = [] | |
for doc in bm25_ranked_docs: | |
bm25_score = 1.0 | |
metadata_multiplier = 1.0 | |
for field, weight in weights.items(): | |
if field in doc.metadata and doc.metadata[field]: | |
metadata_multiplier += weight | |
date_field = str(doc.metadata.get("date_tsim", "")) | |
for year in query_years: | |
if re.search(rf"\b{year}\b", date_field) or re.search(rf"{year[:-2]}\d{{2}}β{year[:-2]}\d{{2}}", date_field): | |
metadata_multiplier += 50 | |
break | |
final_score = bm25_score * metadata_multiplier | |
ranked_docs.append((doc, final_score)) | |
ranked_docs.sort(key=lambda x: x[1], reverse=True) | |
return [doc for doc, _ in ranked_docs[:10]] | |
def parse_xml_and_query(query:str,xml_string:str) -> str: | |
"""parse xml and return rephrased query""" | |
if not xml_string: | |
return "No response generated." | |
pattern = r"<(\w+)>(.*?)</\1>" | |
matches = re.findall(pattern, xml_string, re.DOTALL) | |
parsed_response = dict(matches) | |
if parsed_response.get('VALID') == 'NO': | |
return query | |
return parsed_response.get('STATEMENT', query) | |
def parse_xml_and_check(xml_string: str) -> str: | |
"""Parse XML-style tags and handle validation.""" | |
if not xml_string: | |
return "No response generated." | |
pattern = r"<(\w+)>(.*?)</\1>" | |
matches = re.findall(pattern, xml_string, re.DOTALL) | |
parsed_response = dict(matches) | |
if parsed_response.get('VALID') == 'NO': | |
return "Sorry, I was unable to find any documents for your query.\n\n Here are some documents I found that might be relevant." | |
return parsed_response.get('RESPONSE', "No response found in the output") | |
def RAG(llm: Any, query: str,vectorstore:PineconeVectorStore, top: int = 10, k: int = 100) -> Tuple[str, List[Document]]: | |
"""Main RAG function with improved error handling and validation.""" | |
start = time.time() | |
try: | |
# Query alignment is commented our, however I have decided to leave it in for potential future use. | |
# π Rephrase and expand the user query for better Pinecone matching | |
query = rephrase_and_expand_query(query, llm) | |
logging.info(f"Rephrased Query for Retrieval: {query}") | |
retrieved, _ = retrieve(query=query, vectorstore=vectorstore, k=k) | |
if not retrieved: | |
return "No documents found for your query.", [] | |
# Rerank documents | |
reranked = rerank(documents=retrieved, query=query) | |
logging.info(f"RERANKED LENGTH: {len(reranked)}") | |
if not reranked: | |
return "Unable to process the retrieved documents.", [] | |
# Prepare context from reranked documents | |
context = "\n\n".join(doc.page_content for doc in reranked[:top] if doc.page_content) | |
if not context.strip(): | |
return "No relevant content found in the documents.", [] | |
# change for the sake of another commit | |
# Prepare prompt | |
answer_template = PromptTemplate.from_template( | |
"""Pretend you are a professional librarian. Please Summarize The Following Context as though you had retrieved it for a patron: | |
Some of the retrieved results may include image descriptions, captions, or references to photos, rather than the images themselves. | |
Assume that content describing or captioning an image, or mentioning a place/person clearly, is valid and relevant β even if the actual image isn't embedded. | |
Context:{context} | |
Make sure to answer in the following format | |
First, reason about the answer between <REASONING></REASONING> headers, | |
based on the context determine if there is sufficient material for answering the exact question, | |
return either <VALID>YES</VALID> or <VALID>NO</VALID> | |
then return a response between <RESPONSE></RESPONSE> headers: | |
Here is an example | |
<EXAMPLE> | |
<QUERY>Are pineapples a good fuel for cars?</QUERY> | |
<CONTEXT>Cars use gasoline for fuel. Some cars use electricity for fuel.Tesla stock has increased by 10 percent over the last quarter.</CONTEXT> | |
<REASONING>Based on the context pineapples have not been explored as a fuel for cars. The context discusses gasoline, electricity, and tesla stock, therefore it is not relevant to the query about pineapples for fuel</REASONING> | |
<VALID>NO</VALID> | |
<RESPONSE>Pineapples are not a good fuel for cars, however with further research they might be</RESPONSE> | |
</EXAMPLE> | |
Now it's your turn | |
<QUERY> | |
{query} | |
</QUERY>""" | |
) | |
# Generate response | |
ans_prompt = answer_template.invoke({"context": context, "query": query}) | |
response = llm.invoke(ans_prompt) | |
# Parse and return response | |
logging.debug(f"RAW LLM RESPONSE:\n{response.content}") | |
parsed = parse_xml_and_check(response.content) | |
logging.debug(f"PARSED FINAL RESPONSE: {parsed}") | |
#logging.info(f"RESPONSE: {parsed}\nRETRIEVED: {reranked}") | |
logging.info(f"RAG Finished: {time.time()-start}\n---\n") | |
return parsed, reranked | |
except Exception as e: | |
logging.error(f"Error in RAG function: {str(e)}") | |
return f"An error occurred while processing your query: {str(e)}", [] |