Spaces:
Running
Running
File size: 12,245 Bytes
d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 5e31ea3 d5c23d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import getpass
import os
import time
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from langchain_huggingface import HuggingFaceEmbeddings
from dotenv import load_dotenv
from langchain_core.prompts import PromptTemplate
from langchain_openai import ChatOpenAI
import re
from langchain_core.documents import Document
from langchain_community.retrievers import BM25Retriever
import requests
import psycopg2
from collections import defaultdict
from typing import Dict, Any, Optional, List, Tuple
import json
import logging
def retrieve(query: str,vectorstore:PineconeVectorStore, k: int = 1000) -> Tuple[List[Document], List[float]]:
start = time.time()
results = vectorstore.similarity_search_with_score(
query,
k=k,
)
documents = []
scores = []
for res, score in results:
# check to make sure response isnt too long for context window of 4o-mini
if len(res.page_content) > 4000:
res.page_content = res.page_content[:4000]
documents.append(res)
scores.append(score)
logging.info(f"Finished Retrieval: {time.time() - start}")
return documents, scores
def safe_get_json(url: str) -> Optional[Dict]:
"""Safely fetch and parse JSON from a URL."""
print("Fetching JSON")
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
return response.json()
except Exception as e:
logging.error(f"Error fetching from {url}: {str(e)}")
return None
def extract_text_from_json(json_data: Dict) -> str:
"""Extract text content from JSON response."""
if not json_data:
return ""
text_parts = []
# Handle direct text fields
text_fields = ["title_info_primary_tsi","abstract_tsi","subject_geographic_sim","genre_basic_ssim","genre_specific_ssim","date_tsim"]
for field in text_fields:
if field in json_data['data']['attributes'] and json_data['data']['attributes'][field]:
# print(json_data[field])
text_parts.append(str(json_data['data']['attributes'][field]))
return " ".join(text_parts) if text_parts else "No content available"
def rephrase_and_expand_query(query: str, llm: Any) -> str:
"""Use LLM to rewrite and expand a query for better alignment with archive metadata."""
prompt_template = PromptTemplate.from_template(
"""
You are a professional librarian skilled at historical research.
Rewrite and expand the query to match metadata tags. Include related terms (synonyms, historical names, places, events).
<IMPROVED_QUERY>your improved query here</IMPROVED_QUERY>
<EXPANDED_QUERY>your expanded query here</EXPANDED_QUERY>
Original Query: {query}
"""
)
prompt = prompt_template.invoke({"query": query})
response = llm.invoke(prompt)
improved_match = re.search(r"<IMPROVED_QUERY>(.*?)</IMPROVED_QUERY>", response.content, re.DOTALL)
expanded_match = re.search(r"<EXPANDED_QUERY>(.*?)</EXPANDED_QUERY>", response.content, re.DOTALL)
improved_query = improved_match.group(1).strip() if improved_match else query
expanded_query = expanded_match.group(1).strip() if expanded_match else ""
return f"{improved_query} {expanded_query}".strip()
def extract_years_from_query(query: str) -> List[str]:
"""Extract 4-digit years from query for boosting."""
return re.findall(r"\b(1[5-9]\d{2}|20\d{2}|21\d{2}|22\d{2}|23\d{2})\b", query)
weights = {
"title_info_primary_tsi": 1.5, # Titles should be prioritized
"name_role_tsim": 1.4, # Author/role should be highly weighted
"date_tsim": 1.3, # Date should be considered
"abstract_tsi": 1.0, # Abstracts are important but less so
"note_tsim": 0.8,
"subject_geographic_sim": 0.5,
"genre_basic_ssim": 0.5,
"genre_specific_ssim": 0.5,
}
def get_metadata(document_ids: List[str]) -> Dict[str, Dict]:
""" Fetch metadata from either PostgreSQL or the Commonwealth API, based on config """
if USE_DB_FOR_METADATA:
return get_metadata_from_db(document_ids)
else:
return get_metadata_from_api(document_ids)
def get_metadata_from_db(document_ids: List[str]) -> Dict[str, Dict]:
""" Fetch metadata from PostgreSQL """
conn = psycopg2.connect(
host="127.0.0.1",
port="5435",
dbname="bpl_metadata",
user="postgres",
password="MNOF.MzLDjcgzAXu" # Replace with real one or load with dotenv
)
cur = conn.cursor()
sql_query = """
SELECT id, title, abstract, subjects, institution, metadata_url, image_url
FROM metadata
WHERE id = ANY(%s);
"""
cur.execute(sql_query, (document_ids,))
results = cur.fetchall()
cur.close()
conn.close()
# Convert results to a dictionary
return {
row[0]: {
"title": row[1],
"abstract": row[2],
"subjects": row[3],
"institution": row[4],
"metadata_url": row[5],
"image_url": row[6],
}
for row in results
}
def get_metadata_from_api(document_ids: List[str]) -> Dict[str, Dict]:
""" Fetch metadata from the Commonwealth API """
metadata_dict = {}
for doc_id in document_ids:
url = f"https://www.digitalcommonwealth.org/search/{doc_id}.json"
json_data = safe_get_json(url)
if json_data:
metadata_dict[doc_id] = extract_text_from_json(json_data)
return metadata_dict
def rerank(documents: List[Document], query: str) -> List[Document]:
"""Rerank documents using BM25 and metadata, boost if year matches."""
if not documents:
return []
query_years = extract_years_from_query(query)
grouped = defaultdict(list)
for doc in documents:
source_id = doc.metadata.get("source")
if source_id:
grouped[source_id].append(doc)
full_docs = []
for source_id, chunks in grouped.items():
combined_text = " ".join(chunk.page_content for chunk in chunks if chunk.page_content)
metadata = chunks[0].metadata if chunks else {}
full_docs.append(Document(
page_content=combined_text.strip(),
metadata={**metadata, "source": source_id}
))
if not full_docs:
return []
bm25 = BM25Retriever.from_documents(full_docs, k=len(full_docs))
bm25_ranked_docs = bm25.invoke(query)
ranked_docs = []
for doc in bm25_ranked_docs:
bm25_score = 1.0
metadata_multiplier = 1.0
for field, weight in weights.items():
if field in doc.metadata and doc.metadata[field]:
metadata_multiplier += weight
date_field = str(doc.metadata.get("date_tsim", ""))
for year in query_years:
if re.search(rf"\b{year}\b", date_field) or re.search(rf"{year[:-2]}\d{{2}}β{year[:-2]}\d{{2}}", date_field):
metadata_multiplier += 50
break
final_score = bm25_score * metadata_multiplier
ranked_docs.append((doc, final_score))
ranked_docs.sort(key=lambda x: x[1], reverse=True)
return [doc for doc, _ in ranked_docs[:10]]
def parse_xml_and_query(query:str,xml_string:str) -> str:
"""parse xml and return rephrased query"""
if not xml_string:
return "No response generated."
pattern = r"<(\w+)>(.*?)</\1>"
matches = re.findall(pattern, xml_string, re.DOTALL)
parsed_response = dict(matches)
if parsed_response.get('VALID') == 'NO':
return query
return parsed_response.get('STATEMENT', query)
def parse_xml_and_check(xml_string: str) -> str:
"""Parse XML-style tags and handle validation."""
if not xml_string:
return "No response generated."
pattern = r"<(\w+)>(.*?)</\1>"
matches = re.findall(pattern, xml_string, re.DOTALL)
parsed_response = dict(matches)
if parsed_response.get('VALID') == 'NO':
return "Sorry, I was unable to find any documents for your query.\n\n Here are some documents I found that might be relevant."
return parsed_response.get('RESPONSE', "No response found in the output")
def RAG(llm: Any, query: str,vectorstore:PineconeVectorStore, top: int = 10, k: int = 100) -> Tuple[str, List[Document]]:
"""Main RAG function with improved error handling and validation."""
start = time.time()
try:
# Query alignment is commented our, however I have decided to leave it in for potential future use.
# π Rephrase and expand the user query for better Pinecone matching
query = rephrase_and_expand_query(query, llm)
logging.info(f"Rephrased Query for Retrieval: {query}")
retrieved, _ = retrieve(query=query, vectorstore=vectorstore, k=k)
if not retrieved:
return "No documents found for your query.", []
# Rerank documents
reranked = rerank(documents=retrieved, query=query)
logging.info(f"RERANKED LENGTH: {len(reranked)}")
if not reranked:
return "Unable to process the retrieved documents.", []
# Prepare context from reranked documents
context = "\n\n".join(doc.page_content for doc in reranked[:top] if doc.page_content)
if not context.strip():
return "No relevant content found in the documents.", []
# change for the sake of another commit
# Prepare prompt
answer_template = PromptTemplate.from_template(
"""Pretend you are a professional librarian. Please Summarize The Following Context as though you had retrieved it for a patron:
Some of the retrieved results may include image descriptions, captions, or references to photos, rather than the images themselves.
Assume that content describing or captioning an image, or mentioning a place/person clearly, is valid and relevant β even if the actual image isn't embedded.
Context:{context}
Make sure to answer in the following format
First, reason about the answer between <REASONING></REASONING> headers,
based on the context determine if there is sufficient material for answering the exact question,
return either <VALID>YES</VALID> or <VALID>NO</VALID>
then return a response between <RESPONSE></RESPONSE> headers:
Here is an example
<EXAMPLE>
<QUERY>Are pineapples a good fuel for cars?</QUERY>
<CONTEXT>Cars use gasoline for fuel. Some cars use electricity for fuel.Tesla stock has increased by 10 percent over the last quarter.</CONTEXT>
<REASONING>Based on the context pineapples have not been explored as a fuel for cars. The context discusses gasoline, electricity, and tesla stock, therefore it is not relevant to the query about pineapples for fuel</REASONING>
<VALID>NO</VALID>
<RESPONSE>Pineapples are not a good fuel for cars, however with further research they might be</RESPONSE>
</EXAMPLE>
Now it's your turn
<QUERY>
{query}
</QUERY>"""
)
# Generate response
ans_prompt = answer_template.invoke({"context": context, "query": query})
response = llm.invoke(ans_prompt)
# Parse and return response
logging.debug(f"RAW LLM RESPONSE:\n{response.content}")
parsed = parse_xml_and_check(response.content)
logging.debug(f"PARSED FINAL RESPONSE: {parsed}")
#logging.info(f"RESPONSE: {parsed}\nRETRIEVED: {reranked}")
logging.info(f"RAG Finished: {time.time()-start}\n---\n")
return parsed, reranked
except Exception as e:
logging.error(f"Error in RAG function: {str(e)}")
return f"An error occurred while processing your query: {str(e)}", [] |