Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,19 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
4 |
-
#
|
5 |
MODEL_ID = "songhieng/khmer-mt5-summarization"
|
6 |
|
7 |
-
#
|
8 |
@st.cache_resource
|
9 |
def load_tokenizer_and_model(model_id):
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
@@ -13,33 +22,20 @@ def load_tokenizer_and_model(model_id):
|
|
13 |
|
14 |
tokenizer, model = load_tokenizer_and_model(MODEL_ID)
|
15 |
|
16 |
-
# 3. Streamlit page config
|
17 |
-
st.set_page_config(
|
18 |
-
page_title="Khmer Text Summarization",
|
19 |
-
layout="wide",
|
20 |
-
initial_sidebar_state="expanded"
|
21 |
-
)
|
22 |
-
|
23 |
# 4. App header
|
24 |
st.title("π Khmer Text Summarization")
|
25 |
st.write("Paste your Khmer text below and click **Summarize** to get a concise summary.")
|
26 |
|
27 |
# 5. Sidebar summarization settings
|
28 |
st.sidebar.header("Summarization Settings")
|
29 |
-
max_length = st.sidebar.slider(
|
30 |
-
|
31 |
-
)
|
32 |
-
min_length = st.sidebar.slider(
|
33 |
-
"Minimum summary length", 10, 100, 30, step=5
|
34 |
-
)
|
35 |
-
num_beams = st.sidebar.slider(
|
36 |
-
"Beam search width", 1, 10, 4, step=1
|
37 |
-
)
|
38 |
|
39 |
# 6. Text input
|
40 |
user_input = st.text_area(
|
41 |
-
"Enter Khmer text hereβ¦",
|
42 |
-
height=300,
|
43 |
placeholder="ααΌαααΆαα’αααααααααααα
ααΈαααβ¦"
|
44 |
)
|
45 |
|
@@ -49,14 +45,14 @@ if st.button("Summarize"):
|
|
49 |
st.warning("β οΈ Please enter some text to summarize.")
|
50 |
else:
|
51 |
with st.spinner("Generating summaryβ¦"):
|
52 |
-
# Tokenize
|
53 |
inputs = tokenizer(
|
54 |
user_input,
|
55 |
return_tensors="pt",
|
56 |
truncation=True,
|
57 |
padding="longest"
|
58 |
)
|
59 |
-
# Generate
|
60 |
summary_ids = model.generate(
|
61 |
**inputs,
|
62 |
max_length=max_length,
|
@@ -65,11 +61,10 @@ if st.button("Summarize"):
|
|
65 |
length_penalty=2.0,
|
66 |
early_stopping=True
|
67 |
)
|
68 |
-
# Decode
|
69 |
summary = tokenizer.decode(
|
70 |
-
summary_ids[0],
|
71 |
skip_special_tokens=True
|
72 |
)
|
73 |
-
# Display
|
74 |
st.subheader("π Summary:")
|
75 |
st.write(summary)
|
|
|
1 |
import streamlit as st
|
2 |
+
|
3 |
+
# 1. Streamlit page config MUST be the first Streamlit command
|
4 |
+
st.set_page_config(
|
5 |
+
page_title="Khmer Text Summarization",
|
6 |
+
page_icon="π",
|
7 |
+
layout="wide",
|
8 |
+
initial_sidebar_state="expanded"
|
9 |
+
)
|
10 |
+
|
11 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
12 |
|
13 |
+
# 2. Model identifier
|
14 |
MODEL_ID = "songhieng/khmer-mt5-summarization"
|
15 |
|
16 |
+
# 3. Load tokenizer & model, cached to avoid reloading every run
|
17 |
@st.cache_resource
|
18 |
def load_tokenizer_and_model(model_id):
|
19 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
|
|
22 |
|
23 |
tokenizer, model = load_tokenizer_and_model(MODEL_ID)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# 4. App header
|
26 |
st.title("π Khmer Text Summarization")
|
27 |
st.write("Paste your Khmer text below and click **Summarize** to get a concise summary.")
|
28 |
|
29 |
# 5. Sidebar summarization settings
|
30 |
st.sidebar.header("Summarization Settings")
|
31 |
+
max_length = st.sidebar.slider("Maximum summary length", 50, 300, 150, step=10)
|
32 |
+
min_length = st.sidebar.slider("Minimum summary length", 10, 100, 30, step=5)
|
33 |
+
num_beams = st.sidebar.slider("Beam search width", 1, 10, 4, step=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# 6. Text input
|
36 |
user_input = st.text_area(
|
37 |
+
"Enter Khmer text hereβ¦",
|
38 |
+
height=300,
|
39 |
placeholder="ααΌαααΆαα’αααααααααααα
ααΈαααβ¦"
|
40 |
)
|
41 |
|
|
|
45 |
st.warning("β οΈ Please enter some text to summarize.")
|
46 |
else:
|
47 |
with st.spinner("Generating summaryβ¦"):
|
48 |
+
# Tokenize the input text
|
49 |
inputs = tokenizer(
|
50 |
user_input,
|
51 |
return_tensors="pt",
|
52 |
truncation=True,
|
53 |
padding="longest"
|
54 |
)
|
55 |
+
# Generate the summary
|
56 |
summary_ids = model.generate(
|
57 |
**inputs,
|
58 |
max_length=max_length,
|
|
|
61 |
length_penalty=2.0,
|
62 |
early_stopping=True
|
63 |
)
|
64 |
+
# Decode and display
|
65 |
summary = tokenizer.decode(
|
66 |
+
summary_ids[0],
|
67 |
skip_special_tokens=True
|
68 |
)
|
|
|
69 |
st.subheader("π Summary:")
|
70 |
st.write(summary)
|