Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,75 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_identifier, use_fast=False)
|
7 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_identifier, use_fast=False)
|
8 |
|
9 |
-
#
|
10 |
-
st.
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
st.title("Khmer Text Summarization")
|
14 |
-
st.write("Enter Khmer text below to generate a concise summary.")
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
#
|
|
|
|
|
|
|
|
|
20 |
st.sidebar.header("Summarization Settings")
|
21 |
-
max_length = st.sidebar.slider(
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
summary_ids = model.generate(
|
34 |
-
inputs,
|
35 |
max_length=max_length,
|
36 |
min_length=min_length,
|
37 |
num_beams=num_beams,
|
38 |
length_penalty=2.0,
|
39 |
early_stopping=True
|
40 |
)
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
st.warning("Please enter some text to summarize.")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
4 |
+
# 1. Model identifier
|
5 |
+
MODEL_ID = "songhieng/khmer-mt5-summarization"
|
|
|
|
|
6 |
|
7 |
+
# 2. Load tokenizer (you can choose fast or slow; fast is the default)
|
8 |
+
@st.cache_resource
|
9 |
+
def load_tokenizer_and_model(model_id):
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
12 |
+
return tokenizer, model
|
13 |
|
14 |
+
tokenizer, model = load_tokenizer_and_model(MODEL_ID)
|
|
|
|
|
15 |
|
16 |
+
# 3. Streamlit page config
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="Khmer Text Summarization",
|
19 |
+
layout="wide",
|
20 |
+
initial_sidebar_state="expanded"
|
21 |
+
)
|
22 |
|
23 |
+
# 4. App header
|
24 |
+
st.title("π Khmer Text Summarization")
|
25 |
+
st.write("Paste your Khmer text below and click **Summarize** to get a concise summary.")
|
26 |
+
|
27 |
+
# 5. Sidebar summarization settings
|
28 |
st.sidebar.header("Summarization Settings")
|
29 |
+
max_length = st.sidebar.slider(
|
30 |
+
"Maximum summary length", 50, 300, 150, step=10
|
31 |
+
)
|
32 |
+
min_length = st.sidebar.slider(
|
33 |
+
"Minimum summary length", 10, 100, 30, step=5
|
34 |
+
)
|
35 |
+
num_beams = st.sidebar.slider(
|
36 |
+
"Beam search width", 1, 10, 4, step=1
|
37 |
+
)
|
38 |
|
39 |
+
# 6. Text input
|
40 |
+
user_input = st.text_area(
|
41 |
+
"Enter Khmer text hereβ¦",
|
42 |
+
height=300,
|
43 |
+
placeholder="ααΌαααΆαα’αααααααααααα
ααΈαααβ¦"
|
44 |
+
)
|
45 |
|
46 |
+
# 7. Summarize button
|
47 |
+
if st.button("Summarize"):
|
48 |
+
if not user_input.strip():
|
49 |
+
st.warning("β οΈ Please enter some text to summarize.")
|
50 |
+
else:
|
51 |
+
with st.spinner("Generating summaryβ¦"):
|
52 |
+
# Tokenize
|
53 |
+
inputs = tokenizer(
|
54 |
+
user_input,
|
55 |
+
return_tensors="pt",
|
56 |
+
truncation=True,
|
57 |
+
padding="longest"
|
58 |
+
)
|
59 |
+
# Generate
|
60 |
summary_ids = model.generate(
|
61 |
+
**inputs,
|
62 |
max_length=max_length,
|
63 |
min_length=min_length,
|
64 |
num_beams=num_beams,
|
65 |
length_penalty=2.0,
|
66 |
early_stopping=True
|
67 |
)
|
68 |
+
# Decode
|
69 |
+
summary = tokenizer.decode(
|
70 |
+
summary_ids[0],
|
71 |
+
skip_special_tokens=True
|
72 |
+
)
|
73 |
+
# Display
|
74 |
+
st.subheader("π Summary:")
|
75 |
+
st.write(summary)
|
|