Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import PyPDF2 | |
import docx | |
from io import BytesIO | |
st.set_page_config( | |
page_title="TextSphere", | |
page_icon="π€", | |
layout="wide", | |
initial_sidebar_state="expanded" | |
) | |
st.markdown(""" | |
<style> | |
.footer { | |
position: fixed; | |
bottom: 0; | |
right: 0; | |
padding: 10px; | |
font-size: 16px; | |
color: #333; | |
background-color: #f1f1f1; | |
} | |
</style> | |
<div class="footer"> | |
Made with β€οΈ by Baibhav Malviya | |
</div> | |
""", unsafe_allow_html=True) | |
def load_models(): | |
try: | |
text_classification_model = pipeline( | |
"text-classification", | |
model="distilbert-base-uncased-finetuned-sst-2-english" | |
) | |
question_answering_model = pipeline( | |
"question-answering", | |
model="distilbert-base-uncased-distilled-squad" | |
) | |
translation_model = pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-en-fr" | |
) | |
summarization_model = pipeline( | |
"summarization", | |
model="facebook/bart-large-cnn" | |
) | |
except Exception as e: | |
raise RuntimeError(f"Failed to load models: {str(e)}") | |
return text_classification_model, question_answering_model, translation_model, summarization_model | |
def extract_text_from_pdf(uploaded_file): | |
try: | |
pdf_reader = PyPDF2.PdfReader(uploaded_file) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() or "" | |
return text.strip() | |
except Exception as e: | |
st.error(f"Error reading the PDF: {e}") | |
return None | |
def extract_text_from_docx(uploaded_file): | |
try: | |
doc = docx.Document(uploaded_file) | |
return "\n".join([para.text for para in doc.paragraphs]) | |
except Exception as e: | |
st.error(f"Error reading the DOCX: {e}") | |
return None | |
def extract_text_from_txt(uploaded_file): | |
try: | |
return uploaded_file.read().decode("utf-8") | |
except Exception as e: | |
st.error(f"Error reading the TXT file: {e}") | |
return None | |
def extract_text_from_file(uploaded_file, file_type): | |
if file_type == "pdf": | |
return extract_text_from_pdf(uploaded_file) | |
elif file_type == "docx": | |
return extract_text_from_docx(uploaded_file) | |
elif file_type == "txt": | |
return extract_text_from_txt(uploaded_file) | |
return None | |
try: | |
classification_model, qa_model, translation_model, summarization_model = load_models() | |
except Exception as e: | |
st.error(f"An error occurred while loading models: {e}") | |
st.sidebar.title("AI Solutions") | |
option = st.sidebar.selectbox( | |
"Choose a task", | |
["Text Summarization", "Question Answering", "Text Classification", "Language Translation"], | |
index=0 | |
) | |
if option == "Text Summarization": | |
st.title("Text Summarization") | |
st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole document, anyway? π₯΅</h4>", unsafe_allow_html=True) | |
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) [Limit: 1024 Tokens]", type=["pdf", "docx", "txt"]) | |
text_to_summarize = st.text_area("Enter text to summarize (or leave empty if uploading a file):") | |
if uploaded_file: | |
file_type = uploaded_file.name.split(".")[-1].lower() | |
text_to_summarize = extract_text_from_file(uploaded_file, file_type) | |
if st.button("Summarize"): | |
with st.spinner('Summarizing text...'): | |
try: | |
if text_to_summarize: | |
summary = summarization_model(text_to_summarize[:1024], max_length=300, min_length=50, do_sample=False) | |
st.write("Summary:", summary[0]['summary_text']) | |
st.balloons() | |
else: | |
st.error("Please enter text or upload a document for summarization.") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
elif option == "Question Answering": | |
st.title("Question Answering") | |
st.markdown("<h4 style='font-size: 20px;'>- because Google wasn't enough π</h4>", unsafe_allow_html=True) | |
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) for context (optional)", type=["pdf", "docx", "txt"]) | |
context_input = st.text_area("Enter context (or leave empty if uploading a file):") | |
question = st.text_input("Enter your question:") | |
if uploaded_file: | |
file_type = uploaded_file.name.split(".")[-1].lower() | |
context_input = extract_text_from_file(uploaded_file, file_type) | |
if st.button("Get Answer"): | |
with st.spinner('Finding answer...'): | |
try: | |
if context_input and question: | |
answer = qa_model(question=question, context=context_input) | |
st.write("Answer:", answer['answer']) | |
st.balloons() | |
else: | |
st.error("Please enter both context and a question.") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
elif option == "Text Classification": | |
st.title("Text Classification") | |
st.markdown("<h4 style='font-size: 20px;'>- where machines learn to hate spam as much as we do π </h4>", unsafe_allow_html=True) | |
text = st.text_area("Enter text for classification:") | |
if st.button("Classify Text"): | |
with st.spinner('Classifying text...'): | |
try: | |
classification = classification_model(text) | |
st.json(classification) | |
st.balloons() | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
elif option == "Language Translation": | |
st.title("Language Translation (English to Multiple Languages)") | |
st.markdown("<h4 style='font-size: 20px;'>- when 'translate' is the only button you know π</h4>", unsafe_allow_html=True) | |
target_language = st.selectbox("Choose target language", ["French", "Spanish", "German", "Italian", "Portuguese", "Hindi"]) | |
language_models = { | |
"French": "Helsinki-NLP/opus-mt-en-fr", | |
"Spanish": "Helsinki-NLP/opus-mt-en-es", | |
"German": "Helsinki-NLP/opus-mt-en-de", | |
"Italian": "Helsinki-NLP/opus-mt-en-it", | |
"Portuguese": "Helsinki-NLP/opus-mt-en-pt", | |
"Hindi": "Helsinki-NLP/opus-mt-en-hi" | |
} | |
selected_model = language_models.get(target_language) | |
translation_pipeline = pipeline("translation", model=selected_model) | |
text_to_translate = st.text_area(f"Enter text to translate from English to {target_language}:") | |
if st.button("Translate"): | |
with st.spinner('Translating...'): | |
try: | |
if text_to_translate: | |
translated_text = translation_pipeline(text_to_translate) | |
st.write(f"Translated Text ({target_language}):", translated_text[0]['translation_text']) | |
st.balloons() | |
else: | |
st.error("Please enter text to translate.") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |