Spaces:
Sleeping
Sleeping
File size: 7,237 Bytes
bfba113 c279525 bfba113 654aabc c279525 654aabc bfba113 c279525 bfba113 654aabc bfba113 c279525 bfba113 c279525 bfba113 944709e c279525 bfba113 c279525 bfba113 c279525 bfba113 c279525 bfba113 c279525 bfba113 c279525 bfba113 c279525 bfba113 c279525 654aabc c279525 bfba113 944709e bfba113 c279525 bfba113 c279525 bfba113 c279525 bfba113 c279525 bfba113 c279525 bfba113 c279525 654aabc c279525 654aabc c279525 654aabc c279525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import streamlit as st
from transformers import pipeline
import PyPDF2
import docx
from io import BytesIO
st.set_page_config(
page_title="TextSphere",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.footer {
position: fixed;
bottom: 0;
right: 0;
padding: 10px;
font-size: 16px;
color: #333;
background-color: #f1f1f1;
}
</style>
<div class="footer">
Made with β€οΈ by Baibhav Malviya
</div>
""", unsafe_allow_html=True)
@st.cache_resource
def load_models():
try:
text_classification_model = pipeline(
"text-classification",
model="distilbert-base-uncased-finetuned-sst-2-english"
)
question_answering_model = pipeline(
"question-answering",
model="distilbert-base-uncased-distilled-squad"
)
translation_model = pipeline(
"translation",
model="Helsinki-NLP/opus-mt-en-fr"
)
summarization_model = pipeline(
"summarization",
model="facebook/bart-large-cnn"
)
except Exception as e:
raise RuntimeError(f"Failed to load models: {str(e)}")
return text_classification_model, question_answering_model, translation_model, summarization_model
def extract_text_from_pdf(uploaded_file):
try:
pdf_reader = PyPDF2.PdfReader(uploaded_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() or ""
return text.strip()
except Exception as e:
st.error(f"Error reading the PDF: {e}")
return None
def extract_text_from_docx(uploaded_file):
try:
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
except Exception as e:
st.error(f"Error reading the DOCX: {e}")
return None
def extract_text_from_txt(uploaded_file):
try:
return uploaded_file.read().decode("utf-8")
except Exception as e:
st.error(f"Error reading the TXT file: {e}")
return None
def extract_text_from_file(uploaded_file, file_type):
if file_type == "pdf":
return extract_text_from_pdf(uploaded_file)
elif file_type == "docx":
return extract_text_from_docx(uploaded_file)
elif file_type == "txt":
return extract_text_from_txt(uploaded_file)
return None
try:
classification_model, qa_model, translation_model, summarization_model = load_models()
except Exception as e:
st.error(f"An error occurred while loading models: {e}")
st.sidebar.title("AI Solutions")
option = st.sidebar.selectbox(
"Choose a task",
["Text Summarization", "Question Answering", "Text Classification", "Language Translation"],
index=0
)
if option == "Text Summarization":
st.title("Text Summarization")
st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole document, anyway? π₯΅</h4>", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) [Limit: 1024 Tokens]", type=["pdf", "docx", "txt"])
text_to_summarize = st.text_area("Enter text to summarize (or leave empty if uploading a file):")
if uploaded_file:
file_type = uploaded_file.name.split(".")[-1].lower()
text_to_summarize = extract_text_from_file(uploaded_file, file_type)
if st.button("Summarize"):
with st.spinner('Summarizing text...'):
try:
if text_to_summarize:
summary = summarization_model(text_to_summarize[:1024], max_length=300, min_length=50, do_sample=False)
st.write("Summary:", summary[0]['summary_text'])
st.balloons()
else:
st.error("Please enter text or upload a document for summarization.")
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Question Answering":
st.title("Question Answering")
st.markdown("<h4 style='font-size: 20px;'>- because Google wasn't enough π</h4>", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) for context (optional)", type=["pdf", "docx", "txt"])
context_input = st.text_area("Enter context (or leave empty if uploading a file):")
question = st.text_input("Enter your question:")
if uploaded_file:
file_type = uploaded_file.name.split(".")[-1].lower()
context_input = extract_text_from_file(uploaded_file, file_type)
if st.button("Get Answer"):
with st.spinner('Finding answer...'):
try:
if context_input and question:
answer = qa_model(question=question, context=context_input)
st.write("Answer:", answer['answer'])
st.balloons()
else:
st.error("Please enter both context and a question.")
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Text Classification":
st.title("Text Classification")
st.markdown("<h4 style='font-size: 20px;'>- where machines learn to hate spam as much as we do π
</h4>", unsafe_allow_html=True)
text = st.text_area("Enter text for classification:")
if st.button("Classify Text"):
with st.spinner('Classifying text...'):
try:
classification = classification_model(text)
st.json(classification)
st.balloons()
except Exception as e:
st.error(f"An error occurred: {e}")
elif option == "Language Translation":
st.title("Language Translation (English to Multiple Languages)")
st.markdown("<h4 style='font-size: 20px;'>- when 'translate' is the only button you know π</h4>", unsafe_allow_html=True)
target_language = st.selectbox("Choose target language", ["French", "Spanish", "German", "Italian", "Portuguese", "Hindi"])
language_models = {
"French": "Helsinki-NLP/opus-mt-en-fr",
"Spanish": "Helsinki-NLP/opus-mt-en-es",
"German": "Helsinki-NLP/opus-mt-en-de",
"Italian": "Helsinki-NLP/opus-mt-en-it",
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
"Hindi": "Helsinki-NLP/opus-mt-en-hi"
}
selected_model = language_models.get(target_language)
translation_pipeline = pipeline("translation", model=selected_model)
text_to_translate = st.text_area(f"Enter text to translate from English to {target_language}:")
if st.button("Translate"):
with st.spinner('Translating...'):
try:
if text_to_translate:
translated_text = translation_pipeline(text_to_translate)
st.write(f"Translated Text ({target_language}):", translated_text[0]['translation_text'])
st.balloons()
else:
st.error("Please enter text to translate.")
except Exception as e:
st.error(f"An error occurred: {e}")
|