File size: 7,237 Bytes
bfba113
 
 
 
c279525
bfba113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
654aabc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c279525
 
 
 
654aabc
bfba113
c279525
bfba113
654aabc
bfba113
c279525
bfba113
c279525
 
bfba113
944709e
c279525
bfba113
 
 
 
c279525
bfba113
c279525
 
bfba113
c279525
bfba113
 
c279525
bfba113
c279525
bfba113
c279525
bfba113
 
c279525
 
 
 
 
 
 
 
 
 
654aabc
c279525
 
bfba113
 
 
 
 
944709e
bfba113
 
 
c279525
 
 
 
 
 
bfba113
 
 
c279525
bfba113
 
c279525
bfba113
 
c279525
 
 
bfba113
c279525
bfba113
c279525
 
 
 
654aabc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c279525
 
 
654aabc
 
 
 
 
 
 
 
 
 
 
 
c279525
 
654aabc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c279525
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import streamlit as st
from transformers import pipeline
import PyPDF2
import docx
from io import BytesIO

st.set_page_config(
    page_title="TextSphere",
    page_icon="πŸ€–",
    layout="wide",
    initial_sidebar_state="expanded"
)

st.markdown("""
    <style>
        .footer {
            position: fixed;
            bottom: 0;
            right: 0;
            padding: 10px;
            font-size: 16px;
            color: #333;
            background-color: #f1f1f1;
        }
    </style>
    <div class="footer">
        Made with ❀️ by Baibhav Malviya
    </div>
""", unsafe_allow_html=True)

@st.cache_resource
def load_models():
    try:
        text_classification_model = pipeline(
            "text-classification",
            model="distilbert-base-uncased-finetuned-sst-2-english"
        )

        question_answering_model = pipeline(
            "question-answering",
            model="distilbert-base-uncased-distilled-squad"
        )

        translation_model = pipeline(
            "translation",
            model="Helsinki-NLP/opus-mt-en-fr"
        )

        summarization_model = pipeline(
            "summarization",
            model="facebook/bart-large-cnn"
        )

    except Exception as e:
        raise RuntimeError(f"Failed to load models: {str(e)}")

    return text_classification_model, question_answering_model, translation_model, summarization_model

def extract_text_from_pdf(uploaded_file):
    try:
        pdf_reader = PyPDF2.PdfReader(uploaded_file)
        text = ""
        for page in pdf_reader.pages:
            text += page.extract_text() or ""
        return text.strip()
    except Exception as e:
        st.error(f"Error reading the PDF: {e}")
        return None

def extract_text_from_docx(uploaded_file):
    try:
        doc = docx.Document(uploaded_file)
        return "\n".join([para.text for para in doc.paragraphs])
    except Exception as e:
        st.error(f"Error reading the DOCX: {e}")
        return None

def extract_text_from_txt(uploaded_file):
    try:
        return uploaded_file.read().decode("utf-8")
    except Exception as e:
        st.error(f"Error reading the TXT file: {e}")
        return None

def extract_text_from_file(uploaded_file, file_type):
    if file_type == "pdf":
        return extract_text_from_pdf(uploaded_file)
    elif file_type == "docx":
        return extract_text_from_docx(uploaded_file)
    elif file_type == "txt":
        return extract_text_from_txt(uploaded_file)
    return None

try:
    classification_model, qa_model, translation_model, summarization_model = load_models()
except Exception as e:
    st.error(f"An error occurred while loading models: {e}")

st.sidebar.title("AI Solutions")
option = st.sidebar.selectbox(
    "Choose a task",
    ["Text Summarization", "Question Answering", "Text Classification", "Language Translation"],
    index=0
)

if option == "Text Summarization":
    st.title("Text Summarization")
    st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole document, anyway? πŸ₯΅</h4>", unsafe_allow_html=True)
    
    uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) [Limit: 1024 Tokens]", type=["pdf", "docx", "txt"])
    
    text_to_summarize = st.text_area("Enter text to summarize (or leave empty if uploading a file):")

    if uploaded_file:
        file_type = uploaded_file.name.split(".")[-1].lower()
        text_to_summarize = extract_text_from_file(uploaded_file, file_type)

    if st.button("Summarize"):
        with st.spinner('Summarizing text...'):
            try:
                if text_to_summarize:
                    summary = summarization_model(text_to_summarize[:1024], max_length=300, min_length=50, do_sample=False)
                    st.write("Summary:", summary[0]['summary_text'])
                    st.balloons()
                else:
                    st.error("Please enter text or upload a document for summarization.")
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Question Answering":
    st.title("Question Answering")
    st.markdown("<h4 style='font-size: 20px;'>- because Google wasn't enough πŸ˜‰</h4>", unsafe_allow_html=True)
    
    uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) for context (optional)", type=["pdf", "docx", "txt"])
    
    context_input = st.text_area("Enter context (or leave empty if uploading a file):")
    question = st.text_input("Enter your question:")

    if uploaded_file:
        file_type = uploaded_file.name.split(".")[-1].lower()
        context_input = extract_text_from_file(uploaded_file, file_type)

    if st.button("Get Answer"):
        with st.spinner('Finding answer...'):
            try:
                if context_input and question:
                    answer = qa_model(question=question, context=context_input)
                    st.write("Answer:", answer['answer'])
                    st.balloons()
                else:
                    st.error("Please enter both context and a question.")
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Text Classification":
    st.title("Text Classification")
    st.markdown("<h4 style='font-size: 20px;'>- where machines learn to hate spam as much as we do πŸ˜…</h4>", unsafe_allow_html=True)
    
    text = st.text_area("Enter text for classification:")
    
    if st.button("Classify Text"):
        with st.spinner('Classifying text...'):
            try:
                classification = classification_model(text)
                st.json(classification)
                st.balloons()
            except Exception as e:
                st.error(f"An error occurred: {e}")

elif option == "Language Translation":
    st.title("Language Translation (English to Multiple Languages)")
    st.markdown("<h4 style='font-size: 20px;'>- when 'translate' is the only button you know 😁</h4>", unsafe_allow_html=True)
    
    target_language = st.selectbox("Choose target language", ["French", "Spanish", "German", "Italian", "Portuguese", "Hindi"])
    
    language_models = {
        "French": "Helsinki-NLP/opus-mt-en-fr",
        "Spanish": "Helsinki-NLP/opus-mt-en-es",
        "German": "Helsinki-NLP/opus-mt-en-de",
        "Italian": "Helsinki-NLP/opus-mt-en-it",
        "Portuguese": "Helsinki-NLP/opus-mt-en-pt",
        "Hindi": "Helsinki-NLP/opus-mt-en-hi"
    }

    selected_model = language_models.get(target_language)
    translation_pipeline = pipeline("translation", model=selected_model)

    text_to_translate = st.text_area(f"Enter text to translate from English to {target_language}:")
    
    if st.button("Translate"):
        with st.spinner('Translating...'):
            try:
                if text_to_translate:
                    translated_text = translation_pipeline(text_to_translate)
                    st.write(f"Translated Text ({target_language}):", translated_text[0]['translation_text'])
                    st.balloons()
                else:
                    st.error("Please enter text to translate.")
            except Exception as e:
                st.error(f"An error occurred: {e}")