Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,8 @@ import streamlit as st
|
|
2 |
from transformers import pipeline
|
3 |
import PyPDF2
|
4 |
import docx
|
5 |
-
import
|
6 |
|
7 |
-
# Streamlit Page Config
|
8 |
st.set_page_config(
|
9 |
page_title="TextSphere",
|
10 |
page_icon="π€",
|
@@ -12,7 +11,6 @@ st.set_page_config(
|
|
12 |
initial_sidebar_state="expanded"
|
13 |
)
|
14 |
|
15 |
-
# Footer
|
16 |
st.markdown("""
|
17 |
<style>
|
18 |
.footer {
|
@@ -30,106 +28,98 @@ st.markdown("""
|
|
30 |
</div>
|
31 |
""", unsafe_allow_html=True)
|
32 |
|
33 |
-
# Load Model
|
34 |
@st.cache_resource
|
35 |
def load_models():
|
36 |
try:
|
37 |
-
summarization_model = pipeline(
|
|
|
|
|
|
|
38 |
except Exception as e:
|
39 |
-
raise RuntimeError(f"Failed to load
|
40 |
-
return summarization_model
|
41 |
|
42 |
-
summarization_model
|
43 |
|
44 |
-
|
45 |
-
def extract_text_from_pdf(uploaded_pdf):
|
46 |
try:
|
47 |
-
pdf_reader = PyPDF2.PdfReader(
|
48 |
-
|
49 |
for page in pdf_reader.pages:
|
50 |
-
text
|
51 |
-
|
52 |
-
pdf_text += text + "\n"
|
53 |
-
if not pdf_text.strip():
|
54 |
-
st.error("No text found in the PDF.")
|
55 |
-
return None
|
56 |
-
return pdf_text
|
57 |
except Exception as e:
|
58 |
st.error(f"Error reading the PDF: {e}")
|
59 |
return None
|
60 |
|
61 |
-
|
62 |
-
def extract_text_from_txt(uploaded_txt):
|
63 |
try:
|
64 |
-
|
|
|
65 |
except Exception as e:
|
66 |
-
st.error(f"Error reading the
|
67 |
return None
|
68 |
|
69 |
-
|
70 |
-
def extract_text_from_docx(uploaded_docx):
|
71 |
try:
|
72 |
-
|
73 |
-
return "\n".join([para.text for para in doc.paragraphs]).strip()
|
74 |
except Exception as e:
|
75 |
-
st.error(f"Error reading the
|
76 |
return None
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
# Sidebar for Task Selection (Default: Text Summarization)
|
83 |
st.sidebar.title("AI Solutions")
|
84 |
option = st.sidebar.selectbox(
|
85 |
"Choose a task",
|
86 |
["Text Summarization", "Question Answering", "Text Classification", "Language Translation"],
|
87 |
-
index=0 #
|
88 |
)
|
89 |
|
90 |
-
# Text Summarization Task
|
91 |
if option == "Text Summarization":
|
92 |
-
st.title("
|
93 |
-
st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole document? π₯΅</h4>", unsafe_allow_html=True)
|
94 |
-
|
95 |
-
uploaded_file = st.file_uploader(
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
-
|
100 |
-
text_to_summarize = ""
|
101 |
|
102 |
if uploaded_file:
|
103 |
file_type = uploaded_file.name.split(".")[-1].lower()
|
104 |
-
|
105 |
-
if file_type == "pdf":
|
106 |
-
text_to_summarize = extract_text_from_pdf(uploaded_file)
|
107 |
-
elif file_type == "txt":
|
108 |
-
text_to_summarize = extract_text_from_txt(uploaded_file)
|
109 |
-
elif file_type == "docx":
|
110 |
-
text_to_summarize = extract_text_from_docx(uploaded_file)
|
111 |
-
else:
|
112 |
-
st.error("Unsupported file format.")
|
113 |
|
114 |
if st.button("Summarize"):
|
115 |
-
with st.spinner('Summarizing...'):
|
116 |
try:
|
117 |
if text_to_summarize:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
for chunk in chunks:
|
122 |
-
input_length = len(chunk.split()) # Count words in the chunk
|
123 |
-
max_summary_length = max(50, input_length // 2) # Dynamically adjust max_length
|
124 |
-
|
125 |
-
summary = summarization_model(chunk, max_length=max_summary_length, min_length=50, do_sample=False)
|
126 |
-
summaries.append(summary[0]['summary_text'])
|
127 |
-
|
128 |
-
final_summary = " ".join(summaries) # Combine all chunk summaries
|
129 |
-
|
130 |
-
st.write("### Summary:")
|
131 |
-
st.write(final_summary)
|
132 |
else:
|
133 |
-
st.error("Please upload a document
|
134 |
except Exception as e:
|
135 |
-
st.error(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import pipeline
|
3 |
import PyPDF2
|
4 |
import docx
|
5 |
+
from io import BytesIO
|
6 |
|
|
|
7 |
st.set_page_config(
|
8 |
page_title="TextSphere",
|
9 |
page_icon="π€",
|
|
|
11 |
initial_sidebar_state="expanded"
|
12 |
)
|
13 |
|
|
|
14 |
st.markdown("""
|
15 |
<style>
|
16 |
.footer {
|
|
|
28 |
</div>
|
29 |
""", unsafe_allow_html=True)
|
30 |
|
|
|
31 |
@st.cache_resource
|
32 |
def load_models():
|
33 |
try:
|
34 |
+
summarization_model = pipeline(
|
35 |
+
"summarization",
|
36 |
+
model="facebook/bart-large-cnn"
|
37 |
+
)
|
38 |
except Exception as e:
|
39 |
+
raise RuntimeError(f"Failed to load models: {str(e)}")
|
|
|
40 |
|
41 |
+
return summarization_model
|
42 |
|
43 |
+
def extract_text_from_pdf(uploaded_file):
|
|
|
44 |
try:
|
45 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
46 |
+
text = ""
|
47 |
for page in pdf_reader.pages:
|
48 |
+
text += page.extract_text() or "" # Ensure we avoid NoneType issues
|
49 |
+
return text.strip()
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
st.error(f"Error reading the PDF: {e}")
|
52 |
return None
|
53 |
|
54 |
+
def extract_text_from_docx(uploaded_file):
|
|
|
55 |
try:
|
56 |
+
doc = docx.Document(uploaded_file)
|
57 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
58 |
except Exception as e:
|
59 |
+
st.error(f"Error reading the DOCX: {e}")
|
60 |
return None
|
61 |
|
62 |
+
def extract_text_from_txt(uploaded_file):
|
|
|
63 |
try:
|
64 |
+
return uploaded_file.read().decode("utf-8")
|
|
|
65 |
except Exception as e:
|
66 |
+
st.error(f"Error reading the TXT file: {e}")
|
67 |
return None
|
68 |
|
69 |
+
def extract_text_from_file(uploaded_file, file_type):
|
70 |
+
if file_type == "pdf":
|
71 |
+
return extract_text_from_pdf(uploaded_file)
|
72 |
+
elif file_type == "docx":
|
73 |
+
return extract_text_from_docx(uploaded_file)
|
74 |
+
elif file_type == "txt":
|
75 |
+
return extract_text_from_txt(uploaded_file)
|
76 |
+
return None
|
77 |
+
|
78 |
+
try:
|
79 |
+
summarization_model = load_models()
|
80 |
+
except Exception as e:
|
81 |
+
st.error(f"An error occurred while loading models: {e}")
|
82 |
|
|
|
83 |
st.sidebar.title("AI Solutions")
|
84 |
option = st.sidebar.selectbox(
|
85 |
"Choose a task",
|
86 |
["Text Summarization", "Question Answering", "Text Classification", "Language Translation"],
|
87 |
+
index=0 # Makes Text Summarization the default
|
88 |
)
|
89 |
|
|
|
90 |
if option == "Text Summarization":
|
91 |
+
st.title("Text Summarization")
|
92 |
+
st.markdown("<h4 style='font-size: 20px;'>- because who needs to read the whole document, anyway? π₯΅</h4>", unsafe_allow_html=True)
|
93 |
+
|
94 |
+
uploaded_file = st.file_uploader("Upload a document (PDF, DOCX, TXT) [Limit: 1024 Tokens]", type=["pdf", "docx", "txt"])
|
95 |
+
|
96 |
+
text_to_summarize = st.text_area("Enter text to summarize (or leave empty if uploading a file):")
|
|
|
|
|
|
|
97 |
|
98 |
if uploaded_file:
|
99 |
file_type = uploaded_file.name.split(".")[-1].lower()
|
100 |
+
text_to_summarize = extract_text_from_file(uploaded_file, file_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
if st.button("Summarize"):
|
103 |
+
with st.spinner('Summarizing text...'):
|
104 |
try:
|
105 |
if text_to_summarize:
|
106 |
+
summary = summarization_model(text_to_summarize[:1024], max_length=300, min_length=50, do_sample=False)
|
107 |
+
st.write("Summary:", summary[0]['summary_text'])
|
108 |
+
st.balloons()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
else:
|
110 |
+
st.error("Please enter text or upload a document for summarization.")
|
111 |
except Exception as e:
|
112 |
+
st.error(f"An error occurred: {e}")
|
113 |
+
|
114 |
+
elif option == "Question Answering":
|
115 |
+
st.title("Question Answering")
|
116 |
+
st.write("Coming soon... π")
|
117 |
+
|
118 |
+
elif option == "Text Classification":
|
119 |
+
st.title("Text Classification")
|
120 |
+
st.write("Coming soon... π")
|
121 |
+
|
122 |
+
elif option == "Language Translation":
|
123 |
+
st.title("Language Translation")
|
124 |
+
st.write("Coming soon... π")
|
125 |
+
|