soiz1's picture
Update app.py
6b39384 verified
raw
history blame
4.16 kB
from flask import Flask, request, jsonify, render_template
import cv2
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import uuid
import gdown
import matplotlib.pyplot as plt
import warnings
app = Flask(__name__)
# モデル設定と初期化コード
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class GOSNormalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im,255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar,device):
net = hypar["model"]
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
# モデル初期化
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
net = build_model(hypar, device)
# 結果を保存するディレクトリを作成
os.makedirs('static/results', exist_ok=True)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/remove_bg', methods=['POST'])
def remove_bg():
if 'image' not in request.files:
return jsonify({'error': 'No image provided'}), 400
file = request.files['image']
if file.filename == '':
return jsonify({'error': 'No image selected'}), 400
# 一時ファイルとして保存
temp_path = f"static/temp_{uuid.uuid4().hex}.png"
file.save(temp_path)
try:
# 画像処理
image_tensor, orig_size = load_image(temp_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(temp_path).convert("RGB")
# 結果を保存
result_id = uuid.uuid4().hex
rgba_path = f"static/results/{result_id}_rgba.png"
mask_path = f"static/results/{result_id}_mask.png"
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
im_rgba.save(rgba_path)
pil_mask.save(mask_path)
# 一時ファイルを削除
os.remove(temp_path)
return jsonify({
'rgba_url': f"/{rgba_path}",
'mask_url': f"/{mask_path}"
})
except Exception as e:
# エラーが発生したら一時ファイルを削除
if os.path.exists(temp_path):
os.remove(temp_path)
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(debug=True)