Spaces:
Runtime error
Runtime error
from flask import Flask, request, jsonify, render_template | |
import cv2 | |
import os | |
from PIL import Image | |
import numpy as np | |
import torch | |
from torch.autograd import Variable | |
from torchvision import transforms | |
import torch.nn.functional as F | |
import uuid | |
import gdown | |
import matplotlib.pyplot as plt | |
import warnings | |
app = Flask(__name__) | |
# モデル設定と初期化コード | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
class GOSNormalize(object): | |
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]): | |
self.mean = mean | |
self.std = std | |
def __call__(self,image): | |
image = normalize(image,self.mean,self.std) | |
return image | |
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])]) | |
def load_image(im_path, hypar): | |
im = im_reader(im_path) | |
im, im_shp = im_preprocess(im, hypar["cache_size"]) | |
im = torch.divide(im,255.0) | |
shape = torch.from_numpy(np.array(im_shp)) | |
return transform(im).unsqueeze(0), shape.unsqueeze(0) | |
def build_model(hypar,device): | |
net = hypar["model"] | |
if(hypar["model_digit"]=="half"): | |
net.half() | |
for layer in net.modules(): | |
if isinstance(layer, nn.BatchNorm2d): | |
layer.float() | |
net.to(device) | |
if(hypar["restore_model"]!=""): | |
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device)) | |
net.to(device) | |
net.eval() | |
return net | |
def predict(net, inputs_val, shapes_val, hypar, device): | |
net.eval() | |
if(hypar["model_digit"]=="full"): | |
inputs_val = inputs_val.type(torch.FloatTensor) | |
else: | |
inputs_val = inputs_val.type(torch.HalfTensor) | |
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device) | |
ds_val = net(inputs_val_v)[0] | |
pred_val = ds_val[0][0,:,:,:] | |
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear')) | |
ma = torch.max(pred_val) | |
mi = torch.min(pred_val) | |
pred_val = (pred_val-mi)/(ma-mi) | |
if device == 'cuda': torch.cuda.empty_cache() | |
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8) | |
# モデル初期化 | |
hypar = { | |
"model_path": "./saved_models", | |
"restore_model": "isnet.pth", | |
"interm_sup": False, | |
"model_digit": "full", | |
"seed": 0, | |
"cache_size": [1024, 1024], | |
"input_size": [1024, 1024], | |
"crop_size": [1024, 1024], | |
"model": ISNetDIS() | |
} | |
net = build_model(hypar, device) | |
# 結果を保存するディレクトリを作成 | |
os.makedirs('static/results', exist_ok=True) | |
def index(): | |
return render_template('index.html') | |
def remove_bg(): | |
if 'image' not in request.files: | |
return jsonify({'error': 'No image provided'}), 400 | |
file = request.files['image'] | |
if file.filename == '': | |
return jsonify({'error': 'No image selected'}), 400 | |
# 一時ファイルとして保存 | |
temp_path = f"static/temp_{uuid.uuid4().hex}.png" | |
file.save(temp_path) | |
try: | |
# 画像処理 | |
image_tensor, orig_size = load_image(temp_path, hypar) | |
mask = predict(net, image_tensor, orig_size, hypar, device) | |
pil_mask = Image.fromarray(mask).convert('L') | |
im_rgb = Image.open(temp_path).convert("RGB") | |
# 結果を保存 | |
result_id = uuid.uuid4().hex | |
rgba_path = f"static/results/{result_id}_rgba.png" | |
mask_path = f"static/results/{result_id}_mask.png" | |
im_rgba = im_rgb.copy() | |
im_rgba.putalpha(pil_mask) | |
im_rgba.save(rgba_path) | |
pil_mask.save(mask_path) | |
# 一時ファイルを削除 | |
os.remove(temp_path) | |
return jsonify({ | |
'rgba_url': f"/{rgba_path}", | |
'mask_url': f"/{mask_path}" | |
}) | |
except Exception as e: | |
# エラーが発生したら一時ファイルを削除 | |
if os.path.exists(temp_path): | |
os.remove(temp_path) | |
return jsonify({'error': str(e)}), 500 | |
if __name__ == '__main__': | |
app.run(debug=True) |