File size: 4,159 Bytes
a9b3658
 
 
 
 
 
 
 
 
 
 
6b39384
 
 
 
a9b3658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8df85b7
a9b3658
 
8df85b7
a9b3658
 
 
 
8df85b7
a9b3658
 
 
 
8df85b7
a9b3658
 
8df85b7
a9b3658
 
 
 
 
 
 
 
 
8df85b7
a9b3658
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from flask import Flask, request, jsonify, render_template
import cv2
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import uuid

import gdown
import matplotlib.pyplot as plt
import warnings

app = Flask(__name__)

# モデル設定と初期化コード
device = 'cuda' if torch.cuda.is_available() else 'cpu'

class GOSNormalize(object):
    def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
        self.mean = mean
        self.std = std

    def __call__(self,image):
        image = normalize(image,self.mean,self.std)
        return image

transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])

def load_image(im_path, hypar):
    im = im_reader(im_path)
    im, im_shp = im_preprocess(im, hypar["cache_size"])
    im = torch.divide(im,255.0)
    shape = torch.from_numpy(np.array(im_shp))
    return transform(im).unsqueeze(0), shape.unsqueeze(0)

def build_model(hypar,device):
    net = hypar["model"]
    if(hypar["model_digit"]=="half"):
        net.half()
        for layer in net.modules():
            if isinstance(layer, nn.BatchNorm2d):
                layer.float()
    net.to(device)
    if(hypar["restore_model"]!=""):
        net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
        net.to(device)
    net.eval()  
    return net

def predict(net, inputs_val, shapes_val, hypar, device):
    net.eval()
    if(hypar["model_digit"]=="full"):
        inputs_val = inputs_val.type(torch.FloatTensor)
    else:
        inputs_val = inputs_val.type(torch.HalfTensor)
  
    inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
    ds_val = net(inputs_val_v)[0]
    pred_val = ds_val[0][0,:,:,:]
    pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
    ma = torch.max(pred_val)
    mi = torch.min(pred_val)
    pred_val = (pred_val-mi)/(ma-mi)
    if device == 'cuda': torch.cuda.empty_cache()
    return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)

# モデル初期化
hypar = {
    "model_path": "./saved_models",
    "restore_model": "isnet.pth",
    "interm_sup": False,
    "model_digit": "full",
    "seed": 0,
    "cache_size": [1024, 1024],
    "input_size": [1024, 1024],
    "crop_size": [1024, 1024],
    "model": ISNetDIS()
}

net = build_model(hypar, device)

# 結果を保存するディレクトリを作成
os.makedirs('static/results', exist_ok=True)

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/api/remove_bg', methods=['POST'])
def remove_bg():
    if 'image' not in request.files:
        return jsonify({'error': 'No image provided'}), 400
    
    file = request.files['image']
    if file.filename == '':
        return jsonify({'error': 'No image selected'}), 400
    
    # 一時ファイルとして保存
    temp_path = f"static/temp_{uuid.uuid4().hex}.png"
    file.save(temp_path)
    
    try:
        # 画像処理
        image_tensor, orig_size = load_image(temp_path, hypar) 
        mask = predict(net, image_tensor, orig_size, hypar, device)
        
        pil_mask = Image.fromarray(mask).convert('L')
        im_rgb = Image.open(temp_path).convert("RGB")
        
        # 結果を保存
        result_id = uuid.uuid4().hex
        rgba_path = f"static/results/{result_id}_rgba.png"
        mask_path = f"static/results/{result_id}_mask.png"
        
        im_rgba = im_rgb.copy()
        im_rgba.putalpha(pil_mask)
        im_rgba.save(rgba_path)
        pil_mask.save(mask_path)
        
        # 一時ファイルを削除
        os.remove(temp_path)
        
        return jsonify({
            'rgba_url': f"/{rgba_path}",
            'mask_url': f"/{mask_path}"
        })
    except Exception as e:
        # エラーが発生したら一時ファイルを削除
        if os.path.exists(temp_path):
            os.remove(temp_path)
        return jsonify({'error': str(e)}), 500

if __name__ == '__main__':
    app.run(debug=True)