Spaces:
Runtime error
Runtime error
File size: 4,159 Bytes
a9b3658 6b39384 a9b3658 8df85b7 a9b3658 8df85b7 a9b3658 8df85b7 a9b3658 8df85b7 a9b3658 8df85b7 a9b3658 8df85b7 a9b3658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
from flask import Flask, request, jsonify, render_template
import cv2
import os
from PIL import Image
import numpy as np
import torch
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import uuid
import gdown
import matplotlib.pyplot as plt
import warnings
app = Flask(__name__)
# モデル設定と初期化コード
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class GOSNormalize(object):
def __init__(self, mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0])])
def load_image(im_path, hypar):
im = im_reader(im_path)
im, im_shp = im_preprocess(im, hypar["cache_size"])
im = torch.divide(im,255.0)
shape = torch.from_numpy(np.array(im_shp))
return transform(im).unsqueeze(0), shape.unsqueeze(0)
def build_model(hypar,device):
net = hypar["model"]
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"], map_location=device))
net.to(device)
net.eval()
return net
def predict(net, inputs_val, shapes_val, hypar, device):
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val, requires_grad=False).to(device)
ds_val = net(inputs_val_v)[0]
pred_val = ds_val[0][0,:,:,:]
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[0][0],shapes_val[0][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi)
if device == 'cuda': torch.cuda.empty_cache()
return (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
# モデル初期化
hypar = {
"model_path": "./saved_models",
"restore_model": "isnet.pth",
"interm_sup": False,
"model_digit": "full",
"seed": 0,
"cache_size": [1024, 1024],
"input_size": [1024, 1024],
"crop_size": [1024, 1024],
"model": ISNetDIS()
}
net = build_model(hypar, device)
# 結果を保存するディレクトリを作成
os.makedirs('static/results', exist_ok=True)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/api/remove_bg', methods=['POST'])
def remove_bg():
if 'image' not in request.files:
return jsonify({'error': 'No image provided'}), 400
file = request.files['image']
if file.filename == '':
return jsonify({'error': 'No image selected'}), 400
# 一時ファイルとして保存
temp_path = f"static/temp_{uuid.uuid4().hex}.png"
file.save(temp_path)
try:
# 画像処理
image_tensor, orig_size = load_image(temp_path, hypar)
mask = predict(net, image_tensor, orig_size, hypar, device)
pil_mask = Image.fromarray(mask).convert('L')
im_rgb = Image.open(temp_path).convert("RGB")
# 結果を保存
result_id = uuid.uuid4().hex
rgba_path = f"static/results/{result_id}_rgba.png"
mask_path = f"static/results/{result_id}_mask.png"
im_rgba = im_rgb.copy()
im_rgba.putalpha(pil_mask)
im_rgba.save(rgba_path)
pil_mask.save(mask_path)
# 一時ファイルを削除
os.remove(temp_path)
return jsonify({
'rgba_url': f"/{rgba_path}",
'mask_url': f"/{mask_path}"
})
except Exception as e:
# エラーが発生したら一時ファイルを削除
if os.path.exists(temp_path):
os.remove(temp_path)
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(debug=True) |