|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments |
|
from datasets import load_dataset |
|
|
|
|
|
dataset = load_dataset("imdb") |
|
|
|
|
|
model_name = "distilbert-base-uncased" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples["text"], padding="max_length", truncation=True) |
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
num_train_epochs=3, |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
evaluation_strategy="epoch", |
|
logging_dir="./logs", |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=tokenized_datasets["train"], |
|
eval_dataset=tokenized_datasets["test"], |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
def classify_text(text): |
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class = logits.argmax(-1).item() |
|
return predicted_class |
|
|
|
demo = gr.Interface(fn=classify_text, inputs="text", outputs="text") |
|
|
|
|
|
demo.launch() |
|
|