File size: 1,788 Bytes
58f09d1
a4fc148
 
58f09d1
a4fc148
 
58f09d1
a4fc148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58f09d1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset

# ๋ฐ์ดํ„ฐ์…‹ ๋กœ๋”ฉ
dataset = load_dataset("imdb")

# ๋ชจ๋ธ๊ณผ ํ† ํฌ๋‚˜์ด์ € ๋กœ๋”ฉ
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# ๋ฐ์ดํ„ฐ์…‹์„ ๋ชจ๋ธ์— ๋งž๊ฒŒ ์ „์ฒ˜๋ฆฌ
def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)

tokenized_datasets = dataset.map(tokenize_function, batched=True)

# ํ›ˆ๋ จ ์„ค์ •
training_args = TrainingArguments(
    output_dir="./results",           # ๊ฒฐ๊ณผ ์ €์žฅ ๊ฒฝ๋กœ
    num_train_epochs=3,               # ํ›ˆ๋ จ ์—ํญ ์ˆ˜
    per_device_train_batch_size=8,    # ๋ฐฐ์น˜ ํฌ๊ธฐ
    per_device_eval_batch_size=8,     # ๊ฒ€์ฆ ๋ฐฐ์น˜ ํฌ๊ธฐ
    evaluation_strategy="epoch",      # ์—ํญ๋งˆ๋‹ค ๊ฒ€์ฆ
    logging_dir="./logs",             # ๋กœ๊ทธ ์ €์žฅ ๊ฒฝ๋กœ
)

trainer = Trainer(
    model=model,                       # ํ›ˆ๋ จํ•  ๋ชจ๋ธ
    args=training_args,                # ํ›ˆ๋ จ ์ธ์ž
    train_dataset=tokenized_datasets["train"],  # ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์…‹
    eval_dataset=tokenized_datasets["test"],    # ํ‰๊ฐ€ ๋ฐ์ดํ„ฐ์…‹
)

# ํ›ˆ๋ จ ์‹œ์ž‘
trainer.train()

# ๊ทธ๋ผ๋””์˜ค ์ธํ„ฐํŽ˜์ด์Šค๋กœ ํ›ˆ๋ จ๋œ ๋ชจ๋ธ์„ UI์— ์—ฐ๊ฒฐ
def classify_text(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(**inputs)
    logits = outputs.logits
    predicted_class = logits.argmax(-1).item()
    return predicted_class

demo = gr.Interface(fn=classify_text, inputs="text", outputs="text")

# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰ (ํ›ˆ๋ จ ํ›„)
demo.launch()