File size: 1,788 Bytes
58f09d1 a4fc148 58f09d1 a4fc148 58f09d1 a4fc148 58f09d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# ๋ฐ์ดํฐ์
๋ก๋ฉ
dataset = load_dataset("imdb")
# ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋ฉ
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# ๋ฐ์ดํฐ์
์ ๋ชจ๋ธ์ ๋ง๊ฒ ์ ์ฒ๋ฆฌ
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# ํ๋ จ ์ค์
training_args = TrainingArguments(
output_dir="./results", # ๊ฒฐ๊ณผ ์ ์ฅ ๊ฒฝ๋ก
num_train_epochs=3, # ํ๋ จ ์ํญ ์
per_device_train_batch_size=8, # ๋ฐฐ์น ํฌ๊ธฐ
per_device_eval_batch_size=8, # ๊ฒ์ฆ ๋ฐฐ์น ํฌ๊ธฐ
evaluation_strategy="epoch", # ์ํญ๋ง๋ค ๊ฒ์ฆ
logging_dir="./logs", # ๋ก๊ทธ ์ ์ฅ ๊ฒฝ๋ก
)
trainer = Trainer(
model=model, # ํ๋ จํ ๋ชจ๋ธ
args=training_args, # ํ๋ จ ์ธ์
train_dataset=tokenized_datasets["train"], # ํ๋ จ ๋ฐ์ดํฐ์
eval_dataset=tokenized_datasets["test"], # ํ๊ฐ ๋ฐ์ดํฐ์
)
# ํ๋ จ ์์
trainer.train()
# ๊ทธ๋ผ๋์ค ์ธํฐํ์ด์ค๋ก ํ๋ จ๋ ๋ชจ๋ธ์ UI์ ์ฐ๊ฒฐ
def classify_text(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax(-1).item()
return predicted_class
demo = gr.Interface(fn=classify_text, inputs="text", outputs="text")
# Gradio ์ธํฐํ์ด์ค ์คํ (ํ๋ จ ํ)
demo.launch()
|