Spaces:
Configuration error
Configuration error
# IterVM: Iterative Vision Modeling Module for Scene Text Recognition | |
The official code of [IterNet](https://arxiv.org/abs/2204.02630). | |
We propose IterVM, an iterative approach for visual feature extraction which can significantly improve scene text recognition accuracy. | |
IterVM repeatedly uses the high-level visual feature extracted at the previous iteration to enhance the multi-level features extracted at the subsequent iteration. | |
 | |
## Runtime Environment | |
``` | |
pip install -r requirements.txt | |
``` | |
Note: `fastai==1.0.60` is required. | |
## Datasets | |
<details> | |
<summary>Training datasets (Click to expand) </summary> | |
1. [MJSynth](http://www.robots.ox.ac.uk/~vgg/data/text/) (MJ): | |
- Use `tools/create_lmdb_dataset.py` to convert images into LMDB dataset | |
- [LMDB dataset BaiduNetdisk(passwd:n23k)](https://pan.baidu.com/s/1mgnTiyoR8f6Cm655rFI4HQ) | |
2. [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) (ST): | |
- Use `tools/crop_by_word_bb.py` to crop images from original [SynthText](http://www.robots.ox.ac.uk/~vgg/data/scenetext/) dataset, and convert images into LMDB dataset by `tools/create_lmdb_dataset.py` | |
- [LMDB dataset BaiduNetdisk(passwd:n23k)](https://pan.baidu.com/s/1mgnTiyoR8f6Cm655rFI4HQ) | |
3. [WikiText103](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), which is only used for pre-trainig language models: | |
- Use `notebooks/prepare_wikitext103.ipynb` to convert text into CSV format. | |
- [CSV dataset BaiduNetdisk(passwd:dk01)](https://pan.baidu.com/s/1yabtnPYDKqhBb_Ie9PGFXA) | |
</details> | |
<details> | |
<summary>Evaluation datasets (Click to expand) </summary> | |
- Evaluation datasets, LMDB datasets can be downloaded from [BaiduNetdisk(passwd:1dbv)](https://pan.baidu.com/s/1RUg3Akwp7n8kZYJ55rU5LQ), [GoogleDrive](https://drive.google.com/file/d/1dTI0ipu14Q1uuK4s4z32DqbqF3dJPdkk/view?usp=sharing). | |
1. ICDAR 2013 (IC13) | |
2. ICDAR 2015 (IC15) | |
3. IIIT5K Words (IIIT) | |
4. Street View Text (SVT) | |
5. Street View Text-Perspective (SVTP) | |
6. CUTE80 (CUTE) | |
</details> | |
<details> | |
<summary>The structure of `data` directory (Click to expand) </summary> | |
- The structure of `data` directory is | |
``` | |
data | |
βββ charset_36.txt | |
βββ evaluation | |
βΒ Β βββ CUTE80 | |
βΒ Β βββ IC13_857 | |
βΒ Β βββ IC15_1811 | |
βΒ Β βββ IIIT5k_3000 | |
βΒ Β βββ SVT | |
βΒ Β βββ SVTP | |
βββ training | |
βΒ Β βββ MJ | |
βΒ Β βΒ Β βββ MJ_test | |
βΒ Β βΒ Β βββ MJ_train | |
βΒ Β βΒ Β βββ MJ_valid | |
βΒ Β βββ ST | |
βββ WikiText-103.csv | |
βββ WikiText-103_eval_d1.csv | |
``` | |
</details> | |
## Pretrained Models | |
Get the pretrained models from [GoogleDrive](https://drive.google.com/drive/folders/1C8NMI8Od8mQUMlsnkHNLkYj73kbAQ7Bl?usp=sharing). Performances of the pretrained models are summaried as follows: | |
|Model|IC13|SVT|IIIT|IC15|SVTP|CUTE|AVG| | |
|-|-|-|-|-|-|-|-| | |
|IterNet|97.9|95.1|96.9|87.7|90.9|91.3|93.8| | |
## Training | |
1. Pre-train vision model | |
``` | |
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py --config=configs/pretrain_vm.yaml | |
``` | |
2. Pre-train language model | |
``` | |
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config=configs/pretrain_language_model.yaml | |
``` | |
3. Train IterNet | |
``` | |
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py --config=configs/train_iternet.yaml | |
``` | |
Note: | |
- You can set the `checkpoint` path for vision model (vm) and language model separately for specific pretrained model, or set to `None` to train from scratch | |
## Evaluation | |
``` | |
CUDA_VISIBLE_DEVICES=0 python main.py --config=configs/train_iternet.yaml --phase test --image_only | |
``` | |
Additional flags: | |
- `--checkpoint /path/to/checkpoint` set the path of evaluation model | |
- `--test_root /path/to/dataset` set the path of evaluation dataset | |
- `--model_eval [alignment|vision]` which sub-model to evaluate | |
- `--image_only` disable dumping visualization of attention masks | |
## Run Demo | |
[<a href="https://colab.research.google.com/drive/1XmZGJzFF95uafmARtJMudPLLKBO2eXLv?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a>](https://colab.research.google.com/drive/1XmZGJzFF95uafmARtJMudPLLKBO2eXLv?usp=sharing) | |
``` | |
python demo.py --config=configs/train_iternet.yaml --input=figures/demo | |
``` | |
Additional flags: | |
- `--config /path/to/config` set the path of configuration file | |
- `--input /path/to/image-directory` set the path of image directory or wildcard path, e.g, `--input='figs/test/*.png'` | |
- `--checkpoint /path/to/checkpoint` set the path of trained model | |
- `--cuda [-1|0|1|2|3...]` set the cuda id, by default -1 is set and stands for cpu | |
- `--model_eval [alignment|vision]` which sub-model to use | |
- `--image_only` disable dumping visualization of attention masks | |
## Citation | |
If you find our method useful for your reserach, please cite | |
```bash | |
@article{chu2022itervm, | |
title={IterVM: Iterative Vision Modeling Module for Scene Text Recognition}, | |
author={Chu, Xiaojie and Wang, Yongtao}, | |
journal={arXiv preprint arXiv:2204.02630}, | |
year={2022} | |
} | |
``` | |
## License | |
The project is only free for academic research purposes, but needs authorization for commerce. For commerce permission, please contact [email protected]. | |
## Acknowledgements | |
This project is based on [ABINet](https://github.com/FangShancheng/ABINet.git). | |
Thanks for their great works. | |