File size: 16,350 Bytes
721918f
 
 
 
d85a1a6
721918f
 
 
c27f930
 
 
 
 
 
 
 
721918f
c27f930
92ca7f3
d85a1a6
721918f
 
92ca7f3
 
8409acc
92ca7f3
721918f
 
 
c27f930
 
c18bd07
 
266bded
c18bd07
 
266bded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85a1a6
266bded
 
 
 
 
 
d85a1a6
266bded
 
 
 
 
 
 
c18bd07
 
 
266bded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c18bd07
 
 
266bded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
721918f
 
 
 
266bded
d85a1a6
 
 
 
 
266bded
 
721918f
 
 
 
 
c18bd07
 
d85a1a6
c27f930
 
92ca7f3
 
c27f930
 
 
 
92ca7f3
c27f930
721918f
 
 
 
 
 
 
92ca7f3
d85a1a6
 
 
 
 
 
 
721918f
 
 
 
 
 
d85a1a6
721918f
 
 
c27f930
 
 
 
 
 
 
 
 
92ca7f3
c27f930
 
 
 
c18bd07
 
 
 
 
c27f930
 
 
 
 
 
92ca7f3
c27f930
d85a1a6
c27f930
 
c18bd07
266bded
c18bd07
266bded
c18bd07
266bded
 
c18bd07
 
266bded
 
 
92ca7f3
c18bd07
92ca7f3
f87ffe1
c27f930
266bded
c18bd07
721918f
d85a1a6
266bded
 
 
 
c18bd07
266bded
c18bd07
c27f930
f87ffe1
c27f930
c18bd07
92ca7f3
f87ffe1
c27f930
266bded
c18bd07
f87ffe1
721918f
d85a1a6
f87ffe1
c18bd07
721918f
c18bd07
 
f87ffe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27f930
f87ffe1
c27f930
92ca7f3
c27f930
92ca7f3
 
 
 
 
 
c27f930
92ca7f3
d85a1a6
 
 
 
 
266bded
92ca7f3
 
c27f930
92ca7f3
c18bd07
c27f930
c18bd07
721918f
c18bd07
d85a1a6
c18bd07
 
 
d85a1a6
c18bd07
c27f930
92ca7f3
 
 
c27f930
 
c18bd07
d85a1a6
c18bd07
 
 
721918f
d85a1a6
 
 
 
 
721918f
 
 
 
 
 
d85a1a6
 
 
 
 
 
92ca7f3
721918f
 
d85a1a6
721918f
 
 
 
 
266bded
721918f
d85a1a6
721918f
 
d85a1a6
721918f
 
 
 
 
 
 
 
 
d85a1a6
 
721918f
 
d85a1a6
721918f
 
266bded
721918f
 
 
 
 
 
 
 
d85a1a6
c27f930
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
"""
Hotel Review Analysis System for The Kimberley Hotel Hong Kong
ISOM5240 Group Project

Automatically analyzes guest reviews in multiple languages, performs sentiment
analysis and aspect detection, then generates professional responses.
"""

import streamlit as st
from transformers import (
    pipeline,
    AutoModelForSequenceClassification,
    AutoTokenizer
)
import torch
import re
from langdetect import detect

# ===== CONSTANTS =====
MAX_CHARS = 500  # Character limit for reviews

# Supported languages with their display names
SUPPORTED_LANGUAGES = {
    'en': 'English',
    'zh': 'Chinese',
    'ja': 'Japanese',
    'ko': 'Korean',
    'fr': 'French',
    'de': 'German'
}

# ===== ASPECT CONFIGURATION =====
aspect_map = {
    # Location related
    "location": ["location", "near", "close", "access", "transport", "distance", "area", "tsim sha tsui", "kowloon"],
    "view": ["view", "scenery", "vista", "panorama", "outlook", "skyline"],
    "parking": ["parking", "valet", "garage", "car park", "vehicle"],

    # Room related
    "room comfort": ["comfortable", "bed", "pillows", "mattress", "linens", "cozy", "hard", "soft"],
    "room cleanliness": ["clean", "dirty", "spotless", "stains", "hygiene", "sanitation", "dusty"],
    "room amenities": ["amenities", "minibar", "coffee", "tea", "fridge", "facilities", "tv", "kettle"],
    "bathroom": ["bathroom", "shower", "toilet", "sink", "towel", "faucet", "toiletries"],

    # Service related
    "staff service": ["staff", "friendly", "helpful", "rude", "welcoming", "employee", "manager"],
    "reception": ["reception", "check-in", "check-out", "front desk", "welcome", "registration"],
    "housekeeping": ["housekeeping", "maid", "cleaning", "towels", "service", "turndown"],
    "concierge": ["concierge", "recommendation", "advice", "tips", "guidance", "directions"],
    "room service": ["room service", "food delivery", "order", "meal", "tray"],

    # Facilities
    "dining": ["breakfast", "dinner", "restaurant", "meal", "food", "buffet", "lunch"],
    "bar": ["bar", "drinks", "cocktail", "wine", "lounge", "happy hour"],
    "pool": ["pool", "swimming", "jacuzzi", "sun lounger", "deck", "towels"],
    "spa": ["spa", "massage", "treatment", "relax", "wellness", "sauna"],
    "fitness": ["gym", "fitness", "exercise", "workout", "training", "weights"],

    # Technical
    "Wi-Fi": ["wifi", "internet", "connection", "online", "network", "speed"],
    "AC": ["air conditioning", "AC", "temperature", "heating", "cooling", "ventilation"],
    "elevator": ["elevator", "lift", "escalator", "vertical transport", "wait"],

    # Value
    "pricing": ["price", "expensive", "cheap", "value", "rate", "cost", "worth"],
    "extra charges": ["charge", "fee", "bill", "surcharge", "additional", "hidden"]
}

aspect_responses = {
    "location": "We're delighted you enjoyed our prime location and convenient access to local attractions.",
    "view": "It's wonderful to hear you appreciated the beautiful views from our property.",
    "room comfort": "Our team is thrilled you found your room comfortable and inviting.",
    "room cleanliness": "Your commendation of our cleanliness standards means a lot to our housekeeping staff.",
    "staff service": "Your kind words about our team, especially {staff_name}, have been shared with them.",
    "reception": "We're pleased our front desk team made your arrival/departure seamless.",
    "spa": "Our spa practitioners will be delighted you enjoyed their treatments.",
    "pool": "We're glad you had a refreshing time at our pool facilities.",
    "dining": "Thank you for appreciating our culinary offerings - we've shared your feedback with our chefs.",
    "concierge": "We're happy our concierge could enhance your stay with local insights.",
    "fitness": "It's great to hear you made use of our well-equipped fitness center.",
    "room service": "We're pleased our in-room dining met your expectations for quality and timeliness.",
    "parking": "We're glad our parking facilities met your needs during your stay.",
    "bathroom": "We appreciate your feedback about our bathroom amenities and cleanliness.",
    "bar": "Thank you for your comments about our bar service and beverage selection.",
    "housekeeping": "Your feedback about our housekeeping service has been shared with the team.",
    "Wi-Fi": "We're pleased our internet service met your connectivity needs.",
    "elevator": "We're glad our elevator service provided convenient access during your stay."
}

improvement_actions = {
    "AC": "completed a full inspection and maintenance of all AC units",
    "housekeeping": "retrained our housekeeping team and adjusted schedules",
    "bathroom": "conducted deep cleaning and maintenance on all bathrooms",
    "parking": "implemented new key management protocols with our valet service",
    "dining": "reviewed our menu pricing and quality with the culinary team",
    "reception": "provided additional customer service training to our front desk",
    "elevator": "performed full servicing and testing of all elevators",
    "room amenities": "begun upgrading in-room amenities based on guest feedback",
    "noise": "initiated soundproofing improvements in affected areas",
    "pricing": "started a comprehensive review of our pricing structure",
    "Wi-Fi": "are upgrading our network infrastructure for better connectivity",
    "bar": "have reviewed our beverage service and inventory procedures",
    "staff service": "have implemented additional staff training programs",
    "room service": "have optimized our food delivery processes",
    "fitness": "are upgrading our gym equipment based on guest feedback"
}

# ===== MODEL CONFIGURATION =====
TRANSLATION_MODELS = {
    # Translations to English
    'zh-en': 'Helsinki-NLP/opus-mt-zh-en',
    'ja-en': 'Helsinki-NLP/opus-mt-ja-en',
    'ko-en': 'Helsinki-NLP/opus-mt-ko-en',
    'fr-en': 'Helsinki-NLP/opus-mt-fr-en',
    'de-en': 'Helsinki-NLP/opus-mt-de-en',
    
    # Translations from English
    'en-zh': 'Helsinki-NLP/opus-mt-en-zh',
    'en-ja': 'Helsinki-NLP/opus-mt-en-ja',
    'en-ko': 'Helsinki-NLP/opus-mt-en-ko',
    'en-fr': 'Helsinki-NLP/opus-mt-en-fr',
    'en-de': 'Helsinki-NLP/opus-mt-en-de'
}

# ===== MODEL LOADING =====
@st.cache_resource
def load_sentiment_model():
    model = AutoModelForSequenceClassification.from_pretrained("smtsead/fine_tuned_bertweet_hotel")
    tokenizer = AutoTokenizer.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis')
    return model, tokenizer

@st.cache_resource
def load_aspect_classifier():
    return pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")

@st.cache_resource
def load_translation_model(src_lang, target_lang='en'):
    model_key = f"{src_lang}-{target_lang}"
    if model_key not in TRANSLATION_MODELS:
        raise ValueError(f"Unsupported translation: {src_lang}{target_lang}")
    return pipeline("translation", model=TRANSLATION_MODELS[model_key])

# ===== CORE FUNCTIONS =====
def detect_language(text):
    try:
        lang = detect(text)
        return 'zh' if lang in ['zh', 'yue'] else lang if lang in SUPPORTED_LANGUAGES else 'en'
    except:
        return 'en'

def translate_text(text, src_lang, target_lang='en'):
    try:
        if src_lang == target_lang:
            return {'translation': text, 'source_lang': src_lang}
        translator = load_translation_model(src_lang, target_lang)
        result = translator(text)[0]['translation_text']
        return {'translation': result, 'source_lang': src_lang}
    except Exception as e:
        return {'error': str(e)}

def analyze_sentiment(text, model, tokenizer):
    inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt')
    with torch.no_grad():
        outputs = model(**inputs)
        probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
        predicted_label = torch.argmax(probs).item()
        confidence = torch.max(probs).item()
    return {
        'label': predicted_label,
        'confidence': f"{confidence:.0%}",
        'sentiment': 'POSITIVE' if predicted_label else 'NEGATIVE'
    }

def detect_aspects(text, aspect_classifier):
    relevant_aspects = []
    text_lower = text.lower()
    for aspect, keywords in aspect_map.items():
        if any(re.search(rf'\b{kw}\b', text_lower) for kw in keywords):
            relevant_aspects.append(aspect)
    
    if relevant_aspects:
        result = aspect_classifier(
            text,
            candidate_labels=relevant_aspects,
            multi_label=True,
            hypothesis_template="This review discusses the hotel's {}."
        )
        return [(aspect, f"{score:.0%}") for aspect, score in zip(result['labels'], result['scores']) if score > 0.6]
    return []

def generate_response(sentiment, aspects, original_text):
    # Personalization
    guest_name = ""
    staff_name = ""
    name_match = re.search(r"(Mr\.|Ms\.|Mrs\.)\s(\w+)", original_text, re.IGNORECASE)
    staff_match = re.search(r"(receptionist|manager|concierge|chef)\s(\w+)", original_text, re.IGNORECASE)
    
    if name_match:
        guest_name = f" {name_match.group(2)}"
    if staff_match:
        staff_name = staff_match.group(2)

    if sentiment['label'] == 1:
        response = f"""Dear{guest_name if guest_name else ' Valued Guest'},

Thank you for choosing The Kimberley Hotel Hong Kong and for sharing your kind feedback with us."""
        
        # Add relevant aspect responses
        added_aspects = set()
        for aspect, _ in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
            if aspect in aspect_responses:
                response_text = aspect_responses[aspect]
                if "{staff_name}" in response_text and staff_name:
                    response_text = response_text.format(staff_name=staff_name)
                response += "\n\n" + response_text
                added_aspects.add(aspect)
                if len(added_aspects) >= 3:
                    break
        
        response += "\n\nWe look forward to welcoming you back for another memorable stay."
    else:
        response = f"""Dear{guest_name if guest_name else ' Guest'},

Thank you for taking the time to share your feedback with us. We sincerely regret that your experience did not meet your expectations."""
        
        # Add improvement actions
        added_improvements = set()
        improvement_text = ""
        for aspect, _ in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
            if aspect in improvement_actions:
                improvement_text += f"\n- Regarding the {aspect}, we have {improvement_actions[aspect]}"
                added_improvements.add(aspect)
                if len(added_improvements) >= 2:
                    break
        
        if improvement_text:
            response += "\n\nTo address your concerns:" + improvement_text
        
        response += "\n\nYour feedback is invaluable to us as we strive to improve our services."
    
    # Common closing
    response += """
    
Should you require any further assistance, please don't hesitate to contact our Guest Relations team.

Sincerely,
Sam Tse
Guest Relations Manager
The Kimberley Hotel Hong Kong
+852 1234 5678 | [email protected]"""
    
    return response

# ===== STREAMLIT UI =====
def main():
    st.set_page_config(
        page_title="Kimberley Review Assistant",
        page_icon="🏨",
        layout="centered"
    )
    
    st.markdown("""
    <style>
        .header { color: #003366; font-size: 28px; font-weight: bold; margin-bottom: 10px; }
        .subheader { color: #666666; font-size: 16px; margin-bottom: 30px; }
        .char-counter { font-size: 12px; color: #666; text-align: right; margin-top: -15px; }
        .char-counter.warning { color: #ff6b6b; }
        .result-box { border-left: 4px solid #003366; padding: 15px; background-color: #f9f9f9; margin: 20px 0; }
        .aspect-badge { background-color: #e6f2ff; padding: 2px 8px; border-radius: 4px; display: inline-block; margin: 2px; }
    </style>
    """, unsafe_allow_html=True)
    
    st.markdown('<div class="header">The Kimberley Hotel Hong Kong</div>', unsafe_allow_html=True)
    st.markdown('<div class="subheader">Guest Review Analysis System</div>', unsafe_allow_html=True)
    
    review = st.text_area("**Paste Guest Review:**", 
                         height=200,
                         max_chars=MAX_CHARS,
                         placeholder=f"Enter review (max {MAX_CHARS} characters)...",
                         key="review_input")
    
    char_count = len(st.session_state.review_input) if 'review_input' in st.session_state else 0
    st.markdown(f'<div class="char-counter{" warning" if char_count > MAX_CHARS else ""}">{char_count}/{MAX_CHARS} characters</div>', 
                unsafe_allow_html=True)
    
    if st.button("Analyze & Generate Response", type="primary"):
        if not review.strip():
            st.error("Please enter a review")
            return
        
        if char_count > MAX_CHARS:
            st.warning(f"Review truncated to {MAX_CHARS} characters")
            review = review[:MAX_CHARS]
        
        with st.spinner("Analyzing feedback..."):
            try:
                # Auto-detect language
                review_lang = detect_language(review)
                st.info(f"Detected language: {SUPPORTED_LANGUAGES.get(review_lang, 'English')}")
                
                # Translate if not English
                if review_lang != 'en':
                    translation = translate_text(review, review_lang, 'en')
                    if 'error' in translation:
                        st.error(f"Translation error: {translation['error']}")
                        return
                    analysis_text = translation['translation']
                    
                    with st.expander("View Translation"):
                        st.write("**Original Review:**")
                        st.write(review)
                        st.write("**English Translation:**")
                        st.write(translation['translation'])
                else:
                    analysis_text = review
                
                # Analyze text
                sentiment_model, tokenizer = load_sentiment_model()
                aspect_classifier = load_aspect_classifier()
                
                sentiment = analyze_sentiment(analysis_text, sentiment_model, tokenizer)
                aspects = detect_aspects(analysis_text, aspect_classifier)
                response = generate_response(sentiment, aspects, review)  # Use original text for name extraction
                
                # Translate response back if needed
                if review_lang != 'en':
                    translation_back = translate_text(response, 'en', review_lang)
                    final_response = translation_back['translation'] if 'error' not in translation_back else response
                else:
                    final_response = response
                
                # Display results
                st.divider()
                
                col1, col2 = st.columns(2)
                with col1:
                    st.markdown("### Sentiment Analysis")
                    st.markdown(f"{'✅' if sentiment['label'] == 1 else '⚠️'} **{sentiment['sentiment']}**")
                    st.caption(f"Confidence: {sentiment['confidence']}")
                
                with col2:
                    st.markdown("### Key Aspects")
                    if aspects:
                        for aspect, score in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
                            st.markdown(f'<div class="aspect-badge">{aspect} ({score})</div>', unsafe_allow_html=True)
                    else:
                        st.markdown("_No specific aspects detected_")
                
                st.divider()
                st.markdown("### Draft Response")
                st.markdown(f'<div class="result-box">{final_response}</div>', unsafe_allow_html=True)
                
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")

if __name__ == "__main__":
    main()