smtsead commited on
Commit
c27f930
·
verified ·
1 Parent(s): fc48fdc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +338 -0
app.py ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import (
3
+ pipeline,
4
+ AutoModelForSequenceClassification,
5
+ AutoTokenizer
6
+ )
7
+ from langdetect import detect
8
+ import torch
9
+ import re
10
+
11
+ # ===== MODEL LOADING =====
12
+ # Translation models configuration
13
+ TRANSLATION_MODELS = {
14
+ # Translations to English
15
+ 'fr-en': 'Helsinki-NLP/opus-mt-fr-en', # French to English
16
+ 'es-en': 'Helsinki-NLP/opus-mt-es-en', # Spanish to English
17
+ 'de-en': 'Helsinki-NLP/opus-mt-de-en', # German to English
18
+ 'zh-en': 'Helsinki-NLP/opus-mt-zh-en', # Chinese to English
19
+ 'ja-en': 'Helsinki-NLP/opus-mt-ja-en', # Japanese to English
20
+
21
+ # Translations from English
22
+ 'en-fr': 'Helsinki-NLP/opus-mt-en-fr', # English to French
23
+ 'en-es': 'Helsinki-NLP/opus-mt-en-es', # English to Spanish
24
+ 'en-de': 'Helsinki-NLP/opus-mt-en-de', # English to German
25
+ 'en-zh': 'Helsinki-NLP/opus-mt-en-zh', # English to Chinese
26
+ 'en-ja': 'Helsinki-NLP/opus-mt-en-ja' # English to Japanese
27
+ }
28
+
29
+ # Sentiment analysis model
30
+ SENTIMENT_MODEL_NAME = "smtsead/fine_tuned_bertweet_hotel"
31
+ SENTIMENT_TOKENIZER = 'finiteautomata/bertweet-base-sentiment-analysis'
32
+
33
+ # Aspect classification model
34
+ ASPECT_MODEL = "MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33"
35
+
36
+ # Initialize models (with caching to avoid reloading)
37
+ @st.cache_resource
38
+ def load_translation_model(src_lang, target_lang='en'):
39
+ """Load translation model for specific language pair"""
40
+ model_key = f"{src_lang}-{target_lang}"
41
+ if model_key not in TRANSLATION_MODELS:
42
+ raise ValueError(f"Unsupported translation: {src_lang}→{target_lang}")
43
+ return pipeline("translation", model=TRANSLATION_MODELS[model_key])
44
+
45
+ @st.cache_resource
46
+ def load_sentiment_model():
47
+ """Load sentiment analysis model"""
48
+ model = AutoModelForSequenceClassification.from_pretrained(SENTIMENT_MODEL_NAME)
49
+ tokenizer = AutoTokenizer.from_pretrained(SENTIMENT_TOKENIZER)
50
+ return model, tokenizer
51
+
52
+ @st.cache_resource
53
+ def load_aspect_classifier():
54
+ """Load aspect classification model"""
55
+ return pipeline("zero-shot-classification", model=ASPECT_MODEL)
56
+
57
+ # ===== PIPELINE FUNCTIONS =====
58
+ def translate_text(text, target_lang='en'):
59
+ """Translate text to target language"""
60
+ try:
61
+ # Detect source language
62
+ src_lang = detect(text)
63
+
64
+ # Handle special case (English to other languages)
65
+ if src_lang == 'en' and target_lang != 'en':
66
+ translator = load_translation_model('en', target_lang)
67
+ else:
68
+ translator = load_translation_model(src_lang, target_lang)
69
+
70
+ # Perform translation
71
+ result = translator(text)[0]['translation_text']
72
+
73
+ return {
74
+ 'original': text,
75
+ 'translation': result,
76
+ 'source_lang': src_lang,
77
+ 'target_lang': target_lang
78
+ }
79
+ except Exception as e:
80
+ return {'error': str(e)}
81
+
82
+ def analyze_sentiment(text, model, tokenizer):
83
+ """Analyze sentiment of text (positive/negative)"""
84
+ inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt')
85
+
86
+ with torch.no_grad():
87
+ outputs = model(**inputs)
88
+ probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
89
+ predicted_label = torch.argmax(probs).item()
90
+ confidence = torch.max(probs).item()
91
+
92
+ return {
93
+ 'label': predicted_label,
94
+ 'confidence': confidence,
95
+ 'sentiment': 'POSITIVE' if predicted_label else 'NEGATIVE'
96
+ }
97
+
98
+ def detect_aspects(text, aspect_classifier):
99
+ """Detect aspects mentioned in text"""
100
+ # Aspect mapping with keywords
101
+ aspect_map = {
102
+ "location": ["location", "near", "close", "access", "transport", "distance", "area"],
103
+ "view": ["view", "scenery", "vista", "panorama", "outlook"],
104
+ "parking": ["parking", "valet", "garage", "car park", "vehicle"],
105
+ "room comfort": ["comfortable", "bed", "pillows", "mattress", "linens", "cozy"],
106
+ "room cleanliness": ["clean", "dirty", "spotless", "stains", "hygiene", "sanitation"],
107
+ "room amenities": ["amenities", "minibar", "coffee", "tea", "fridge", "facilities"],
108
+ "bathroom": ["bathroom", "shower", "toilet", "sink", "towel", "faucet"],
109
+ "staff service": ["staff", "friendly", "helpful", "rude", "welcoming", "employee"],
110
+ "reception": ["reception", "check-in", "check-out", "front desk", "welcome"],
111
+ "housekeeping": ["housekeeping", "maid", "cleaning", "towels", "service"],
112
+ "concierge": ["concierge", "recommendation", "advice", "tips", "guidance"],
113
+ "room service": ["room service", "food delivery", "order", "meal"],
114
+ "dining": ["breakfast", "dinner", "restaurant", "meal", "food", "buffet"],
115
+ "bar": ["bar", "drinks", "cocktail", "wine", "lounge"],
116
+ "pool": ["pool", "swimming", "jacuzzi", "sun lounger", "deck"],
117
+ "spa": ["spa", "massage", "treatment", "relax", "wellness"],
118
+ "fitness": ["gym", "fitness", "exercise", "workout", "training"],
119
+ "Wi-Fi": ["wifi", "internet", "connection", "online", "network"],
120
+ "AC": ["air conditioning", "AC", "temperature", "heating", "cooling"],
121
+ "elevator": ["elevator", "lift", "escalator", "vertical transport"],
122
+ "pricing": ["price", "expensive", "cheap", "value", "rate", "cost"],
123
+ "extra charges": ["charge", "fee", "bill", "surcharge", "additional"]
124
+ }
125
+
126
+ # First stage: keyword filtering
127
+ relevant_aspects = []
128
+ text_lower = text.lower()
129
+ for aspect, keywords in aspect_map.items():
130
+ if any(re.search(rf'\b{kw}\b', text_lower) for kw in keywords):
131
+ relevant_aspects.append(aspect)
132
+
133
+ # Second stage: zero-shot classification
134
+ if relevant_aspects:
135
+ result = aspect_classifier(
136
+ text,
137
+ candidate_labels=relevant_aspects,
138
+ multi_label=True,
139
+ hypothesis_template="This review mentions something about the {} of the hotel."
140
+ )
141
+ # Return aspects with score > 0.65
142
+ return [(aspect, round(score, 2)) for aspect, score in
143
+ zip(result['labels'], result['scores']) if score > 0.65]
144
+ return []
145
+
146
+ def generate_response(label, aspects, text):
147
+ """Generate professional response based on sentiment and aspects"""
148
+ if label == 1:
149
+ # Positive response template
150
+ response = "Dear Valued Guest,\n\nThank you for sharing your positive experience with us!\n"
151
+
152
+ # Positive aspect responses
153
+ aspect_responses = {
154
+ "location": "We're delighted you enjoyed our prime location and convenient access to local attractions.",
155
+ "view": "It's wonderful to hear you appreciated the beautiful views from our property.",
156
+ "room comfort": "Our team is thrilled you found your room comfortable and inviting.",
157
+ "room cleanliness": "Your commendation of our cleanliness standards means a lot to our housekeeping staff.",
158
+ "staff service": "Your kind words about our team, especially {staff_name}, have been shared with them.",
159
+ "reception": "We're pleased our front desk team made your arrival/departure seamless.",
160
+ "spa": "Our spa practitioners will be delighted you enjoyed their treatments.",
161
+ "pool": "We're glad you had a refreshing time at our pool facilities.",
162
+ "dining": "Thank you for appreciating our culinary offerings - we've shared your feedback with our chefs.",
163
+ "concierge": "We're happy our concierge could enhance your stay with local insights.",
164
+ "fitness": "It's great to hear you made use of our well-equipped fitness center.",
165
+ "room service": "We're pleased our in-room dining met your expectations for quality and timeliness."
166
+ }
167
+
168
+ # Add specific aspect responses
169
+ added_aspects = set()
170
+ for aspect, _ in aspects:
171
+ if aspect in aspect_responses:
172
+ if aspect == "staff service" and "lourdes" in text.lower():
173
+ response += "\n" + aspect_responses[aspect].format(staff_name="Lourdes")
174
+ else:
175
+ response += "\n" + aspect_responses[aspect]
176
+ added_aspects.add(aspect)
177
+ if len(added_aspects) >= 3:
178
+ break
179
+
180
+ response += "\n\nWe can't wait to welcome you back for another exceptional stay!\n\nWarm regards,"
181
+ else:
182
+ # Negative response template
183
+ response = "Dear Guest,\n\nThank you for your feedback - we're truly sorry your experience didn't meet our usual standards.\n"
184
+
185
+ # Improvement actions for negative aspects
186
+ improvement_actions = {
187
+ "AC": "completed a full inspection and maintenance of all AC units",
188
+ "housekeeping": "retrained our housekeeping team and adjusted schedules",
189
+ "bathroom": "conducted deep cleaning and maintenance on all bathrooms",
190
+ "parking": "implemented new key management protocols with our valet service",
191
+ "dining": "reviewed our menu pricing and quality with the culinary team",
192
+ "reception": "provided additional customer service training to our front desk",
193
+ "elevator": "performed full servicing and testing of all elevators",
194
+ "room amenities": "begun upgrading in-room amenities based on guest feedback",
195
+ "noise": "initiated soundproofing improvements in affected areas",
196
+ "pricing": "started a comprehensive review of our pricing structure"
197
+ }
198
+
199
+ # Add specific improvement actions
200
+ added_aspects = set()
201
+ for aspect, _ in aspects:
202
+ if aspect in improvement_actions and aspect not in added_aspects:
203
+ response += f"\nRegarding the {aspect}, we've {improvement_actions[aspect]}."
204
+ added_aspects.add(aspect)
205
+ if len(added_aspects) >= 2:
206
+ break
207
+
208
+ response += "\n\nWe sincerely appreciate your patience and hope you'll give us another opportunity to provide the quality experience you deserve.\n\nSincerely,"
209
+
210
+ return response + "\nThe Management Team\n"
211
+
212
+ # ===== STREAMLIT APP =====
213
+ def main():
214
+ st.set_page_config(page_title="Review Response Generator", page_icon="📝")
215
+ st.title("📝 Hotel Review Response Generator")
216
+ st.markdown("""
217
+ This tool helps hotel managers generate professional responses to guest reviews in multiple languages.
218
+
219
+ **How it works:**
220
+ 1. Enter a guest review in any language
221
+ 2. The system will analyze sentiment and key aspects
222
+ 3. A professional response will be generated
223
+ 4. The response will be translated back to the original language
224
+ """)
225
+
226
+ # Initialize session state
227
+ if 'review_text' not in st.session_state:
228
+ st.session_state.review_text = ""
229
+ if 'translated_text' not in st.session_state:
230
+ st.session_state.translated_text = ""
231
+ if 'sentiment_result' not in st.session_state:
232
+ st.session_state.sentiment_result = None
233
+ if 'aspects' not in st.session_state:
234
+ st.session_state.aspects = []
235
+ if 'response' not in st.session_state:
236
+ st.session_state.response = ""
237
+ if 'translated_response' not in st.session_state:
238
+ st.session_state.translated_response = ""
239
+
240
+ # Input review
241
+ review_text = st.text_area("Enter the guest review:", height=150)
242
+
243
+ if st.button("Generate Response"):
244
+ if not review_text.strip():
245
+ st.error("Please enter a review first.")
246
+ return
247
+
248
+ with st.spinner("Processing review..."):
249
+ # Step 1: Translate to English if needed
250
+ translation_result = translate_text(review_text)
251
+
252
+ if 'error' in translation_result:
253
+ st.error(f"Translation error: {translation_result['error']}")
254
+ return
255
+
256
+ st.session_state.review_text = review_text
257
+ st.session_state.translated_text = translation_result['translation']
258
+ source_lang = translation_result['source_lang']
259
+
260
+ # Step 2: Sentiment analysis
261
+ sentiment_model, sentiment_tokenizer = load_sentiment_model()
262
+ sentiment_result = analyze_sentiment(
263
+ st.session_state.translated_text,
264
+ sentiment_model,
265
+ sentiment_tokenizer
266
+ )
267
+ st.session_state.sentiment_result = sentiment_result
268
+
269
+ # Step 3: Aspect detection
270
+ aspect_classifier = load_aspect_classifier()
271
+ st.session_state.aspects = detect_aspects(
272
+ st.session_state.translated_text,
273
+ aspect_classifier
274
+ )
275
+
276
+ # Step 4: Generate response
277
+ st.session_state.response = generate_response(
278
+ sentiment_result['label'],
279
+ st.session_state.aspects,
280
+ st.session_state.translated_text
281
+ )
282
+
283
+ # Step 5: Translate response back to original language if needed
284
+ if source_lang != 'en':
285
+ translation_back = translate_text(
286
+ st.session_state.response,
287
+ target_lang=source_lang
288
+ )
289
+ if 'error' not in translation_back:
290
+ st.session_state.translated_response = translation_back['translation']
291
+ else:
292
+ st.warning(f"Couldn't translate response back: {translation_back['error']}")
293
+ st.session_state.translated_response = st.session_state.response
294
+ else:
295
+ st.session_state.translated_response = st.session_state.response
296
+
297
+ # Display results
298
+ if st.session_state.review_text:
299
+ st.divider()
300
+ st.subheader("Analysis Results")
301
+
302
+ # Original review
303
+ with st.expander("Original Review", expanded=True):
304
+ st.write(st.session_state.review_text)
305
+
306
+ # Translation (if applicable)
307
+ if hasattr(st.session_state, 'translated_text') and st.session_state.translated_text:
308
+ with st.expander("Translated to English"):
309
+ st.write(st.session_state.translated_text)
310
+
311
+ # Sentiment analysis
312
+ if st.session_state.sentiment_result:
313
+ sentiment = st.session_state.sentiment_result
314
+ sentiment_color = "green" if sentiment['label'] == 1 else "red"
315
+ st.markdown(f"**Sentiment:** :{sentiment_color}[{sentiment['sentiment']}] (confidence: {sentiment['confidence']:.2f})")
316
+
317
+ # Detected aspects
318
+ if st.session_state.aspects:
319
+ st.markdown("**Key Aspects Detected:**")
320
+ for aspect, confidence in st.session_state.aspects:
321
+ st.write(f"- {aspect.title()} (confidence: {confidence})")
322
+
323
+ # Generated response
324
+ if st.session_state.response:
325
+ st.divider()
326
+ st.subheader("Generated Response")
327
+
328
+ col1, col2 = st.columns(2)
329
+ with col1:
330
+ st.markdown("**English Version**")
331
+ st.text_area("English response", st.session_state.response, height=300, label_visibility="collapsed")
332
+
333
+ with col2:
334
+ st.markdown("**Translated Back**")
335
+ st.text_area("Translated response", st.session_state.translated_response, height=300, label_visibility="collapsed")
336
+
337
+ if __name__ == "__main__":
338
+ main()