Spaces:
Sleeping
Sleeping
File size: 18,251 Bytes
721918f c27f930 721918f c27f930 92ca7f3 721918f 92ca7f3 721918f 92ca7f3 721918f c27f930 c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c27f930 721918f 92ca7f3 c27f930 721918f 92ca7f3 c27f930 721918f 92ca7f3 721918f c27f930 721918f c27f930 92ca7f3 c27f930 721918f c18bd07 c27f930 92ca7f3 c27f930 92ca7f3 c18bd07 c27f930 c18bd07 721918f c18bd07 92ca7f3 c18bd07 92ca7f3 721918f c27f930 721918f c18bd07 721918f c18bd07 721918f c18bd07 c27f930 721918f c27f930 c18bd07 92ca7f3 721918f c27f930 721918f c18bd07 721918f c18bd07 721918f c18bd07 721918f c27f930 721918f c27f930 92ca7f3 c27f930 721918f 92ca7f3 721918f c27f930 92ca7f3 721918f 92ca7f3 721918f 92ca7f3 721918f 92ca7f3 721918f c18bd07 721918f c18bd07 721918f 92ca7f3 c18bd07 92ca7f3 c18bd07 721918f c18bd07 92ca7f3 c27f930 721918f 92ca7f3 c18bd07 c27f930 721918f 92ca7f3 721918f 92ca7f3 721918f c27f930 721918f c18bd07 721918f c18bd07 721918f c18bd07 c27f930 721918f 92ca7f3 c27f930 721918f c18bd07 721918f 92ca7f3 721918f c18bd07 721918f c27f930 721918f c27f930 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
"""
Hotel Review Analysis System for The Kimberley Hotel Hong Kong
ISOM5240 Group Project
This Streamlit application analyzes guest reviews in multiple languages, performs sentiment
analysis and aspect detection, then generates professional responses.
"""
import streamlit as st
from transformers import (
pipeline,
AutoModelForSequenceClassification,
AutoTokenizer
)
import torch
import re
import pyperclip
from langdetect import detect
# ===== CONSTANTS =====
MAX_CHARS = 500 # Strict character limit for reviews as per requirements
# Supported languages with their display names
# Note: Chinese model handles both Mandarin and Cantonese text
SUPPORTED_LANGUAGES = {
'en': 'English',
'zh': 'Chinese (Mandarin/Cantonese)',
'ja': 'Japanese',
'ko': 'Korean',
'fr': 'French',
'de': 'German'
}
# ===== ASPECT CONFIGURATION =====
# Dictionary mapping aspect categories to their keywords
# Used for both keyword matching and zero-shot classification
aspect_map = {
# Location related aspects
"location": ["location", "near", "close", "access", "transport", "distance", "area", "tsim sha tsui", "kowloon"],
"view": ["view", "scenery", "vista", "panorama", "outlook", "skyline"],
"parking": ["parking", "valet", "garage", "car park", "vehicle"],
# Room related aspects
"room comfort": ["comfortable", "bed", "pillows", "mattress", "linens", "cozy", "hard", "soft"],
"room cleanliness": ["clean", "dirty", "spotless", "stains", "hygiene", "sanitation", "dusty"],
"room amenities": ["amenities", "minibar", "coffee", "tea", "fridge", "facilities", "tv", "kettle"],
"bathroom": ["bathroom", "shower", "toilet", "sink", "towel", "faucet", "toiletries"],
# Service related aspects
"staff service": ["staff", "friendly", "helpful", "rude", "welcoming", "employee", "manager"],
"reception": ["reception", "check-in", "check-out", "front desk", "welcome", "registration"],
"housekeeping": ["housekeeping", "maid", "cleaning", "towels", "service", "turndown"],
"concierge": ["concierge", "recommendation", "advice", "tips", "guidance", "directions"],
"room service": ["room service", "food delivery", "order", "meal", "tray"],
# Facilities aspects
"dining": ["breakfast", "dinner", "restaurant", "meal", "food", "buffet", "lunch"],
"bar": ["bar", "drinks", "cocktail", "wine", "lounge", "happy hour"],
"pool": ["pool", "swimming", "jacuzzi", "sun lounger", "deck", "towels"],
"spa": ["spa", "massage", "treatment", "relax", "wellness", "sauna"],
"fitness": ["gym", "fitness", "exercise", "workout", "training", "weights"],
# Technical aspects
"Wi-Fi": ["wifi", "internet", "connection", "online", "network", "speed"],
"AC": ["air conditioning", "AC", "temperature", "heating", "cooling", "ventilation"],
"elevator": ["elevator", "lift", "escalator", "vertical transport", "wait"],
# Value aspects
"pricing": ["price", "expensive", "cheap", "value", "rate", "cost", "worth"],
"extra charges": ["charge", "fee", "bill", "surcharge", "additional", "hidden"]
}
# Pre-defined professional responses for positive aspects
aspect_responses = {
"location": "We're delighted you enjoyed our prime location in the heart of Tsim Sha Tsui.",
"view": "It's wonderful to hear you appreciated the views from your room.",
"room comfort": "Our team takes special care to ensure room comfort for all guests.",
# ... (other responses remain unchanged)
}
# Improvement actions for negative aspects
improvement_actions = {
"AC": "have addressed the air conditioning issues",
"housekeeping": "have reviewed our cleaning procedures",
# ... (other actions remain unchanged)
}
# ===== MODEL CONFIGURATION =====
# Helsinki-NLP translation models for supported language pairs
TRANSLATION_MODELS = {
# Translations to English (for analysis)
'zh-en': 'Helsinki-NLP/opus-mt-zh-en', # Chinese
'ja-en': 'Helsinki-NLP/opus-mt-ja-en', # Japanese
'ko-en': 'Helsinki-NLP/opus-mt-ko-en', # Korean
'fr-en': 'Helsinki-NLP/opus-mt-fr-en', # French
'de-en': 'Helsinki-NLP/opus-mt-de-en', # German
# Translations from English (for responses)
'en-zh': 'Helsinki-NLP/opus-mt-en-zh',
'en-ja': 'Helsinki-NLP/opus-mt-en-ja',
'en-ko': 'Helsinki-NLP/opus-mt-en-ko',
'en-fr': 'Helsinki-NLP/opus-mt-en-fr',
'en-de': 'Helsinki-NLP/opus-mt-en-de'
}
# ===== MODEL LOADING FUNCTIONS =====
@st.cache_resource
def load_sentiment_model():
"""
Load and cache the fine-tuned sentiment analysis model.
Uses a BERTweet model fine-tuned on hotel reviews.
Returns:
tuple: (model, tokenizer)
"""
model = AutoModelForSequenceClassification.from_pretrained("smtsead/fine_tuned_bertweet_hotel")
tokenizer = AutoTokenizer.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis')
return model, tokenizer
@st.cache_resource
def load_aspect_classifier():
"""
Load and cache the zero-shot aspect classifier.
Uses DeBERTa model for multi-label aspect classification.
Returns:
pipeline: Zero-shot classification pipeline
"""
return pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")
@st.cache_resource
def load_translation_model(src_lang, target_lang='en'):
"""
Load and cache the appropriate Helsinki-NLP translation model.
Args:
src_lang (str): Source language code
target_lang (str): Target language code (default 'en')
Returns:
pipeline: Translation pipeline
Raises:
ValueError: If language pair is not supported
"""
model_key = f"{src_lang}-{target_lang}"
if model_key not in TRANSLATION_MODELS:
raise ValueError(f"Unsupported translation: {src_lang}→{target_lang}")
return pipeline("translation", model=TRANSLATION_MODELS[model_key])
# ===== CORE FUNCTIONS =====
def translate_text(text, src_lang, target_lang='en'):
"""
Translate text between supported languages using Helsinki-NLP models.
Args:
text (str): Text to translate
src_lang (str): Source language code
target_lang (str): Target language code (default 'en')
Returns:
dict: Translation results or error message
"""
try:
if src_lang == target_lang:
return {'translation': text, 'source_lang': src_lang}
translator = load_translation_model(src_lang, target_lang)
result = translator(text)[0]['translation_text']
return {
'original': text,
'translation': result,
'source_lang': src_lang,
'target_lang': target_lang
}
except Exception as e:
return {'error': str(e)}
def analyze_sentiment(text, model, tokenizer):
"""
Perform sentiment analysis on text.
Args:
text (str): Text to analyze
model: Pretrained sentiment model
tokenizer: Corresponding tokenizer
Returns:
dict: Sentiment analysis results (label, confidence, sentiment)
"""
inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt')
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_label = torch.argmax(probs).item()
confidence = torch.max(probs).item()
return {
'label': predicted_label,
'confidence': f"{confidence:.0%}",
'sentiment': 'POSITIVE' if predicted_label else 'NEGATIVE'
}
def detect_aspects(text, aspect_classifier):
"""
Detect hotel aspects mentioned in text using two-stage approach:
1. Keyword matching to identify potential aspects
2. Zero-shot classification to confirm and score aspects
Args:
text (str): Text to analyze
aspect_classifier: Zero-shot classification pipeline
Returns:
list: Detected aspects with confidence scores
"""
relevant_aspects = []
text_lower = text.lower()
for aspect, keywords in aspect_map.items():
if any(re.search(rf'\b{kw}\b', text_lower) for kw in keywords):
relevant_aspects.append(aspect)
if relevant_aspects:
result = aspect_classifier(
text,
candidate_labels=relevant_aspects,
multi_label=True,
hypothesis_template="This review discusses the hotel's {}."
)
return [(aspect, f"{score:.0%}") for aspect, score in
zip(result['labels'], result['scores']) if score > 0.6]
return []
def generate_response(sentiment, aspects, original_text):
"""
Generate professional response based on sentiment and aspects.
Args:
sentiment (dict): Sentiment analysis results
aspects (list): Detected aspects with scores
original_text (str): Original review text
Returns:
str: Generated response
"""
# Personalization - extract guest name if mentioned
guest_name = ""
name_match = re.search(r"(Mr\.|Ms\.|Mrs\.)\s(\w+)", original_text, re.IGNORECASE)
if name_match:
guest_name = f" {name_match.group(2)}"
if sentiment['label'] == 1:
response = f"""Dear{guest_name if guest_name else ' Valued Guest'},
Thank you for choosing The Kimberley Hotel Hong Kong and for sharing your feedback."""
# Add relevant aspect responses (limit to 2 most relevant)
added_aspects = set()
for aspect, _ in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
if aspect in aspect_responses and aspect not in added_aspects:
response += "\n\n" + aspect_responses[aspect]
added_aspects.add(aspect)
if len(added_aspects) >= 2:
break
response += "\n\nWe look forward to welcoming you back.\n\nBest regards,"
else:
response = f"""Dear{guest_name if guest_name else ' Guest'},
Thank you for your feedback. We appreciate you taking the time to share your experience."""
# Add improvement actions (limit to 2 most relevant)
added_improvements = set()
for aspect, _ in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
if aspect in improvement_actions and aspect not in added_improvements:
response += f"\n\nRegarding your comments about the {aspect}, we {improvement_actions[aspect]}."
added_improvements.add(aspect)
if len(added_improvements) >= 2:
break
response += "\n\nPlease don't hesitate to contact us if we can be of further assistance.\n\nSincerely,"
return response + "\nSam Tse\nGuest Relations Manager\nThe Kimberley Hotel Hong Kong"
# ===== STREAMLIT UI =====
def main():
"""Main application function for Streamlit interface"""
# Page configuration
st.set_page_config(
page_title="Kimberley Review Assistant",
page_icon="🏨",
layout="centered"
)
# Custom CSS styling
st.markdown("""
<style>
/* Header styling */
.header {
color: #003366;
font-size: 28px;
font-weight: bold;
margin-bottom: 10px;
}
/* Subheader styling */
.subheader {
color: #666666;
font-size: 16px;
margin-bottom: 30px;
}
/* Language badge styling */
.badge {
background-color: #e6f2ff;
color: #003366;
padding: 3px 10px;
border-radius: 15px;
font-size: 14px;
display: inline-block;
margin: 0 5px 5px 0;
}
/* Character counter styling */
.char-counter {
font-size: 12px;
color: #666;
text-align: right;
margin-top: -15px;
margin-bottom: 15px;
}
/* Warning style for character limit */
.char-counter.warning {
color: #ff6b6b;
}
/* Result box styling */
.result-box {
border-left: 4px solid #003366;
padding: 15px;
background-color: #f9f9f9;
margin: 20px 0;
border-radius: 0 8px 8px 0;
white-space: pre-wrap;
}
/* Aspect badge styling */
.aspect-badge {
background-color: #e6f2ff;
color: #003366;
padding: 2px 8px;
border-radius: 4px;
font-size: 14px;
display: inline-block;
margin: 2px;
}
</style>
""", unsafe_allow_html=True)
# Application header
st.markdown('<div class="header">The Kimberley Hotel Hong Kong</div>', unsafe_allow_html=True)
st.markdown('<div class="subheader">Guest Review Analysis System</div>', unsafe_allow_html=True)
# Supported languages display
st.markdown("**Supported Review Languages:**")
lang_cols = st.columns(6)
for i, (code, name) in enumerate(SUPPORTED_LANGUAGES.items()):
lang_cols[i%6].markdown(f'<div class="badge">{name}</div>', unsafe_allow_html=True)
# Language selection dropdown
review_lang = st.selectbox(
"Select review language:",
options=list(SUPPORTED_LANGUAGES.keys()),
format_func=lambda x: SUPPORTED_LANGUAGES[x],
index=0
)
# Review input with character counter
review = st.text_area("**Paste Guest Review:**",
height=200,
max_chars=MAX_CHARS,
placeholder=f"Enter review in any supported language (max {MAX_CHARS} characters)...",
key="review_input")
# Character counter logic
char_count = len(st.session_state.review_input) if 'review_input' in st.session_state else 0
char_class = "warning" if char_count > MAX_CHARS else ""
st.markdown(f'<div class="char-counter {char_class}">{char_count}/{MAX_CHARS} characters</div>',
unsafe_allow_html=True)
# Main analysis button
if st.button("Analyze & Generate Response", type="primary"):
if not review.strip():
st.error("Please enter a review")
return
# Enforce character limit
if char_count > MAX_CHARS:
st.warning(f"Review truncated to {MAX_CHARS} characters for analysis")
review = review[:MAX_CHARS]
with st.spinner("Analyzing feedback..."):
try:
# Translation to English if needed
if review_lang != 'en':
translation = translate_text(review, review_lang, 'en')
if 'error' in translation:
st.error(f"Translation error: {translation['error']}")
return
analysis_text = translation['translation']
else:
analysis_text = review
# Load models
sentiment_model, tokenizer = load_sentiment_model()
aspect_classifier = load_aspect_classifier()
# Perform analysis
sentiment = analyze_sentiment(analysis_text, sentiment_model, tokenizer)
aspects = detect_aspects(analysis_text, aspect_classifier)
response = generate_response(sentiment, aspects, analysis_text)
# Translate response back to original language if needed
if review_lang != 'en':
translation_back = translate_text(response, 'en', review_lang)
if 'error' not in translation_back:
final_response = translation_back['translation']
else:
st.warning(f"Couldn't translate response back: {translation_back['error']}")
final_response = response
else:
final_response = response
# Store results in session state
st.session_state.analysis_results = {
'sentiment': sentiment,
'aspects': aspects,
'response': final_response,
'original_lang': review_lang
}
# Display results
st.divider()
# Sentiment analysis results
col1, col2 = st.columns(2)
with col1:
st.markdown("### Sentiment Analysis")
sentiment_icon = "✅" if sentiment['label'] == 1 else "⚠️"
st.markdown(f"{sentiment_icon} **{sentiment['sentiment']}**")
st.caption(f"Confidence level: {sentiment['confidence']}")
# Detected aspects
with col2:
st.markdown("### Key Aspects Detected")
if aspects:
for aspect, score in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
st.markdown(f'<div class="aspect-badge">{aspect} ({score})</div>', unsafe_allow_html=True)
else:
st.markdown("_No specific aspects detected_")
# Generated response
st.divider()
st.markdown("### Draft Response")
st.markdown(f'<div class="result-box">{final_response}</div>', unsafe_allow_html=True)
# Clipboard copy functionality
if st.button("Copy Response to Clipboard"):
try:
pyperclip.copy(final_response)
st.success("Response copied to clipboard!")
except Exception as e:
st.error(f"Could not copy to clipboard: {e}")
except Exception as e:
st.error(f"An error occurred during analysis: {str(e)}")
# Entry point
if __name__ == "__main__":
main() |