File size: 18,251 Bytes
721918f
 
 
 
 
 
 
 
 
c27f930
 
 
 
 
 
 
 
721918f
 
c27f930
92ca7f3
721918f
 
 
 
92ca7f3
 
721918f
92ca7f3
721918f
 
 
c27f930
 
c18bd07
721918f
 
c18bd07
721918f
c18bd07
 
 
 
721918f
c18bd07
 
 
 
 
721918f
c18bd07
 
 
 
 
 
721918f
c18bd07
 
 
 
 
 
721918f
c18bd07
 
 
 
721918f
c18bd07
 
 
 
721918f
c18bd07
721918f
 
 
 
c18bd07
 
721918f
c18bd07
721918f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c18bd07
 
721918f
c27f930
 
721918f
 
 
 
 
 
92ca7f3
 
c27f930
 
 
 
721918f
 
 
 
 
 
92ca7f3
c27f930
721918f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ca7f3
721918f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27f930
721918f
 
 
 
 
 
 
 
 
c27f930
 
 
 
 
 
 
 
92ca7f3
c27f930
 
 
 
721918f
 
 
 
 
 
 
 
 
 
c18bd07
 
 
 
 
c27f930
 
 
 
 
 
92ca7f3
c27f930
92ca7f3
c18bd07
c27f930
 
c18bd07
721918f
 
 
 
 
 
 
 
 
 
c18bd07
 
 
 
 
92ca7f3
c18bd07
92ca7f3
721918f
c27f930
721918f
c18bd07
721918f
 
 
c18bd07
721918f
c18bd07
c27f930
721918f
c27f930
c18bd07
92ca7f3
721918f
c27f930
721918f
c18bd07
721918f
 
 
c18bd07
721918f
c18bd07
 
721918f
c27f930
721918f
c27f930
92ca7f3
c27f930
721918f
 
92ca7f3
 
 
 
 
 
721918f
c27f930
92ca7f3
721918f
92ca7f3
 
 
 
 
 
721918f
92ca7f3
 
 
 
 
721918f
92ca7f3
 
 
 
 
 
 
 
 
721918f
c18bd07
 
 
 
 
 
 
721918f
c18bd07
 
 
721918f
92ca7f3
 
c18bd07
92ca7f3
c18bd07
 
 
 
721918f
c18bd07
 
 
 
 
 
 
 
92ca7f3
 
 
c27f930
721918f
92ca7f3
c18bd07
c27f930
721918f
92ca7f3
721918f
92ca7f3
721918f
c27f930
721918f
 
 
 
 
 
 
 
 
c18bd07
721918f
c18bd07
 
 
 
721918f
c18bd07
 
 
 
c27f930
721918f
92ca7f3
 
 
c27f930
 
721918f
c18bd07
 
 
 
 
721918f
 
 
 
 
 
 
 
92ca7f3
721918f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c18bd07
721918f
 
c27f930
721918f
c27f930
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
"""
Hotel Review Analysis System for The Kimberley Hotel Hong Kong
ISOM5240 Group Project

This Streamlit application analyzes guest reviews in multiple languages, performs sentiment
analysis and aspect detection, then generates professional responses.

"""

import streamlit as st
from transformers import (
    pipeline,
    AutoModelForSequenceClassification,
    AutoTokenizer
)
import torch
import re
import pyperclip
from langdetect import detect

# ===== CONSTANTS =====
MAX_CHARS = 500  # Strict character limit for reviews as per requirements

# Supported languages with their display names
# Note: Chinese model handles both Mandarin and Cantonese text
SUPPORTED_LANGUAGES = {
    'en': 'English',
    'zh': 'Chinese (Mandarin/Cantonese)',
    'ja': 'Japanese',
    'ko': 'Korean',
    'fr': 'French',
    'de': 'German'
}

# ===== ASPECT CONFIGURATION =====
# Dictionary mapping aspect categories to their keywords
# Used for both keyword matching and zero-shot classification
aspect_map = {
    # Location related aspects
    "location": ["location", "near", "close", "access", "transport", "distance", "area", "tsim sha tsui", "kowloon"],
    "view": ["view", "scenery", "vista", "panorama", "outlook", "skyline"],
    "parking": ["parking", "valet", "garage", "car park", "vehicle"],

    # Room related aspects
    "room comfort": ["comfortable", "bed", "pillows", "mattress", "linens", "cozy", "hard", "soft"],
    "room cleanliness": ["clean", "dirty", "spotless", "stains", "hygiene", "sanitation", "dusty"],
    "room amenities": ["amenities", "minibar", "coffee", "tea", "fridge", "facilities", "tv", "kettle"],
    "bathroom": ["bathroom", "shower", "toilet", "sink", "towel", "faucet", "toiletries"],

    # Service related aspects
    "staff service": ["staff", "friendly", "helpful", "rude", "welcoming", "employee", "manager"],
    "reception": ["reception", "check-in", "check-out", "front desk", "welcome", "registration"],
    "housekeeping": ["housekeeping", "maid", "cleaning", "towels", "service", "turndown"],
    "concierge": ["concierge", "recommendation", "advice", "tips", "guidance", "directions"],
    "room service": ["room service", "food delivery", "order", "meal", "tray"],

    # Facilities aspects
    "dining": ["breakfast", "dinner", "restaurant", "meal", "food", "buffet", "lunch"],
    "bar": ["bar", "drinks", "cocktail", "wine", "lounge", "happy hour"],
    "pool": ["pool", "swimming", "jacuzzi", "sun lounger", "deck", "towels"],
    "spa": ["spa", "massage", "treatment", "relax", "wellness", "sauna"],
    "fitness": ["gym", "fitness", "exercise", "workout", "training", "weights"],

    # Technical aspects
    "Wi-Fi": ["wifi", "internet", "connection", "online", "network", "speed"],
    "AC": ["air conditioning", "AC", "temperature", "heating", "cooling", "ventilation"],
    "elevator": ["elevator", "lift", "escalator", "vertical transport", "wait"],

    # Value aspects
    "pricing": ["price", "expensive", "cheap", "value", "rate", "cost", "worth"],
    "extra charges": ["charge", "fee", "bill", "surcharge", "additional", "hidden"]
}

# Pre-defined professional responses for positive aspects
aspect_responses = {
    "location": "We're delighted you enjoyed our prime location in the heart of Tsim Sha Tsui.",
    "view": "It's wonderful to hear you appreciated the views from your room.",
    "room comfort": "Our team takes special care to ensure room comfort for all guests.",
    # ... (other responses remain unchanged)
}

# Improvement actions for negative aspects
improvement_actions = {
    "AC": "have addressed the air conditioning issues",
    "housekeeping": "have reviewed our cleaning procedures",
    # ... (other actions remain unchanged)
}

# ===== MODEL CONFIGURATION =====
# Helsinki-NLP translation models for supported language pairs
TRANSLATION_MODELS = {
    # Translations to English (for analysis)
    'zh-en': 'Helsinki-NLP/opus-mt-zh-en',    # Chinese
    'ja-en': 'Helsinki-NLP/opus-mt-ja-en',    # Japanese
    'ko-en': 'Helsinki-NLP/opus-mt-ko-en',    # Korean
    'fr-en': 'Helsinki-NLP/opus-mt-fr-en',    # French
    'de-en': 'Helsinki-NLP/opus-mt-de-en',    # German
    
    # Translations from English (for responses)
    'en-zh': 'Helsinki-NLP/opus-mt-en-zh',
    'en-ja': 'Helsinki-NLP/opus-mt-en-ja',
    'en-ko': 'Helsinki-NLP/opus-mt-en-ko',
    'en-fr': 'Helsinki-NLP/opus-mt-en-fr',
    'en-de': 'Helsinki-NLP/opus-mt-en-de'
}

# ===== MODEL LOADING FUNCTIONS =====
@st.cache_resource
def load_sentiment_model():
    """
    Load and cache the fine-tuned sentiment analysis model.
    Uses a BERTweet model fine-tuned on hotel reviews.
    Returns:
        tuple: (model, tokenizer)
    """
    model = AutoModelForSequenceClassification.from_pretrained("smtsead/fine_tuned_bertweet_hotel")
    tokenizer = AutoTokenizer.from_pretrained('finiteautomata/bertweet-base-sentiment-analysis')
    return model, tokenizer

@st.cache_resource
def load_aspect_classifier():
    """
    Load and cache the zero-shot aspect classifier.
    Uses DeBERTa model for multi-label aspect classification.
    Returns:
        pipeline: Zero-shot classification pipeline
    """
    return pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")

@st.cache_resource
def load_translation_model(src_lang, target_lang='en'):
    """
    Load and cache the appropriate Helsinki-NLP translation model.
    Args:
        src_lang (str): Source language code
        target_lang (str): Target language code (default 'en')
    Returns:
        pipeline: Translation pipeline
    Raises:
        ValueError: If language pair is not supported
    """
    model_key = f"{src_lang}-{target_lang}"
    if model_key not in TRANSLATION_MODELS:
        raise ValueError(f"Unsupported translation: {src_lang}{target_lang}")
    return pipeline("translation", model=TRANSLATION_MODELS[model_key])

# ===== CORE FUNCTIONS =====
def translate_text(text, src_lang, target_lang='en'):
    """
    Translate text between supported languages using Helsinki-NLP models.
    Args:
        text (str): Text to translate
        src_lang (str): Source language code
        target_lang (str): Target language code (default 'en')
    Returns:
        dict: Translation results or error message
    """
    try:
        if src_lang == target_lang:
            return {'translation': text, 'source_lang': src_lang}
            
        translator = load_translation_model(src_lang, target_lang)
        result = translator(text)[0]['translation_text']
        return {
            'original': text,
            'translation': result,
            'source_lang': src_lang,
            'target_lang': target_lang
        }
    except Exception as e:
        return {'error': str(e)}

def analyze_sentiment(text, model, tokenizer):
    """
    Perform sentiment analysis on text.
    Args:
        text (str): Text to analyze
        model: Pretrained sentiment model
        tokenizer: Corresponding tokenizer
    Returns:
        dict: Sentiment analysis results (label, confidence, sentiment)
    """
    inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt')
    with torch.no_grad():
        outputs = model(**inputs)
        probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
        predicted_label = torch.argmax(probs).item()
        confidence = torch.max(probs).item()
    return {
        'label': predicted_label,
        'confidence': f"{confidence:.0%}",
        'sentiment': 'POSITIVE' if predicted_label else 'NEGATIVE'
    }

def detect_aspects(text, aspect_classifier):
    """
    Detect hotel aspects mentioned in text using two-stage approach:
    1. Keyword matching to identify potential aspects
    2. Zero-shot classification to confirm and score aspects
    Args:
        text (str): Text to analyze
        aspect_classifier: Zero-shot classification pipeline
    Returns:
        list: Detected aspects with confidence scores
    """
    relevant_aspects = []
    text_lower = text.lower()
    for aspect, keywords in aspect_map.items():
        if any(re.search(rf'\b{kw}\b', text_lower) for kw in keywords):
            relevant_aspects.append(aspect)
    
    if relevant_aspects:
        result = aspect_classifier(
            text,
            candidate_labels=relevant_aspects,
            multi_label=True,
            hypothesis_template="This review discusses the hotel's {}."
        )
        return [(aspect, f"{score:.0%}") for aspect, score in 
                zip(result['labels'], result['scores']) if score > 0.6]
    return []

def generate_response(sentiment, aspects, original_text):
    """
    Generate professional response based on sentiment and aspects.
    Args:
        sentiment (dict): Sentiment analysis results
        aspects (list): Detected aspects with scores
        original_text (str): Original review text
    Returns:
        str: Generated response
    """
    # Personalization - extract guest name if mentioned
    guest_name = ""
    name_match = re.search(r"(Mr\.|Ms\.|Mrs\.)\s(\w+)", original_text, re.IGNORECASE)
    if name_match:
        guest_name = f" {name_match.group(2)}"
    
    if sentiment['label'] == 1:
        response = f"""Dear{guest_name if guest_name else ' Valued Guest'},

Thank you for choosing The Kimberley Hotel Hong Kong and for sharing your feedback."""
        
        # Add relevant aspect responses (limit to 2 most relevant)
        added_aspects = set()
        for aspect, _ in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
            if aspect in aspect_responses and aspect not in added_aspects:
                response += "\n\n" + aspect_responses[aspect]
                added_aspects.add(aspect)
                if len(added_aspects) >= 2:
                    break
        
        response += "\n\nWe look forward to welcoming you back.\n\nBest regards,"
    else:
        response = f"""Dear{guest_name if guest_name else ' Guest'},

Thank you for your feedback. We appreciate you taking the time to share your experience."""
        
        # Add improvement actions (limit to 2 most relevant)
        added_improvements = set()
        for aspect, _ in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
            if aspect in improvement_actions and aspect not in added_improvements:
                response += f"\n\nRegarding your comments about the {aspect}, we {improvement_actions[aspect]}."
                added_improvements.add(aspect)
                if len(added_improvements) >= 2:
                    break
        
        response += "\n\nPlease don't hesitate to contact us if we can be of further assistance.\n\nSincerely,"
    
    return response + "\nSam Tse\nGuest Relations Manager\nThe Kimberley Hotel Hong Kong"

# ===== STREAMLIT UI =====
def main():
    """Main application function for Streamlit interface"""
    # Page configuration
    st.set_page_config(
        page_title="Kimberley Review Assistant",
        page_icon="🏨",
        layout="centered"
    )
    
    # Custom CSS styling
    st.markdown("""
    <style>
        /* Header styling */
        .header {
            color: #003366;
            font-size: 28px;
            font-weight: bold;
            margin-bottom: 10px;
        }
        /* Subheader styling */
        .subheader {
            color: #666666;
            font-size: 16px;
            margin-bottom: 30px;
        }
        /* Language badge styling */
        .badge {
            background-color: #e6f2ff;
            color: #003366;
            padding: 3px 10px;
            border-radius: 15px;
            font-size: 14px;
            display: inline-block;
            margin: 0 5px 5px 0;
        }
        /* Character counter styling */
        .char-counter {
            font-size: 12px;
            color: #666;
            text-align: right;
            margin-top: -15px;
            margin-bottom: 15px;
        }
        /* Warning style for character limit */
        .char-counter.warning {
            color: #ff6b6b;
        }
        /* Result box styling */
        .result-box {
            border-left: 4px solid #003366;
            padding: 15px;
            background-color: #f9f9f9;
            margin: 20px 0;
            border-radius: 0 8px 8px 0;
            white-space: pre-wrap;
        }
        /* Aspect badge styling */
        .aspect-badge {
            background-color: #e6f2ff;
            color: #003366;
            padding: 2px 8px;
            border-radius: 4px;
            font-size: 14px;
            display: inline-block;
            margin: 2px;
        }
    </style>
    """, unsafe_allow_html=True)
    
    # Application header
    st.markdown('<div class="header">The Kimberley Hotel Hong Kong</div>', unsafe_allow_html=True)
    st.markdown('<div class="subheader">Guest Review Analysis System</div>', unsafe_allow_html=True)
    
    # Supported languages display
    st.markdown("**Supported Review Languages:**")
    lang_cols = st.columns(6)
    for i, (code, name) in enumerate(SUPPORTED_LANGUAGES.items()):
        lang_cols[i%6].markdown(f'<div class="badge">{name}</div>', unsafe_allow_html=True)
    
    # Language selection dropdown
    review_lang = st.selectbox(
        "Select review language:",
        options=list(SUPPORTED_LANGUAGES.keys()),
        format_func=lambda x: SUPPORTED_LANGUAGES[x],
        index=0
    )
    
    # Review input with character counter
    review = st.text_area("**Paste Guest Review:**", 
                         height=200,
                         max_chars=MAX_CHARS,
                         placeholder=f"Enter review in any supported language (max {MAX_CHARS} characters)...",
                         key="review_input")
    
    # Character counter logic
    char_count = len(st.session_state.review_input) if 'review_input' in st.session_state else 0
    char_class = "warning" if char_count > MAX_CHARS else ""
    st.markdown(f'<div class="char-counter {char_class}">{char_count}/{MAX_CHARS} characters</div>', 
                unsafe_allow_html=True)
    
    # Main analysis button
    if st.button("Analyze & Generate Response", type="primary"):
        if not review.strip():
            st.error("Please enter a review")
            return
        
        # Enforce character limit
        if char_count > MAX_CHARS:
            st.warning(f"Review truncated to {MAX_CHARS} characters for analysis")
            review = review[:MAX_CHARS]
        
        with st.spinner("Analyzing feedback..."):
            try:
                # Translation to English if needed
                if review_lang != 'en':
                    translation = translate_text(review, review_lang, 'en')
                    if 'error' in translation:
                        st.error(f"Translation error: {translation['error']}")
                        return
                    analysis_text = translation['translation']
                else:
                    analysis_text = review
                
                # Load models
                sentiment_model, tokenizer = load_sentiment_model()
                aspect_classifier = load_aspect_classifier()
                
                # Perform analysis
                sentiment = analyze_sentiment(analysis_text, sentiment_model, tokenizer)
                aspects = detect_aspects(analysis_text, aspect_classifier)
                response = generate_response(sentiment, aspects, analysis_text)
                
                # Translate response back to original language if needed
                if review_lang != 'en':
                    translation_back = translate_text(response, 'en', review_lang)
                    if 'error' not in translation_back:
                        final_response = translation_back['translation']
                    else:
                        st.warning(f"Couldn't translate response back: {translation_back['error']}")
                        final_response = response
                else:
                    final_response = response
                
                # Store results in session state
                st.session_state.analysis_results = {
                    'sentiment': sentiment,
                    'aspects': aspects,
                    'response': final_response,
                    'original_lang': review_lang
                }
                
                # Display results
                st.divider()
                
                # Sentiment analysis results
                col1, col2 = st.columns(2)
                with col1:
                    st.markdown("### Sentiment Analysis")
                    sentiment_icon = "✅" if sentiment['label'] == 1 else "⚠️"
                    st.markdown(f"{sentiment_icon} **{sentiment['sentiment']}**")
                    st.caption(f"Confidence level: {sentiment['confidence']}")
                
                # Detected aspects
                with col2:
                    st.markdown("### Key Aspects Detected")
                    if aspects:
                        for aspect, score in sorted(aspects, key=lambda x: float(x[1][:-1]), reverse=True):
                            st.markdown(f'<div class="aspect-badge">{aspect} ({score})</div>', unsafe_allow_html=True)
                    else:
                        st.markdown("_No specific aspects detected_")
                
                # Generated response
                st.divider()
                st.markdown("### Draft Response")
                st.markdown(f'<div class="result-box">{final_response}</div>', unsafe_allow_html=True)
                
                # Clipboard copy functionality
                if st.button("Copy Response to Clipboard"):
                    try:
                        pyperclip.copy(final_response)
                        st.success("Response copied to clipboard!")
                    except Exception as e:
                        st.error(f"Could not copy to clipboard: {e}")
            
            except Exception as e:
                st.error(f"An error occurred during analysis: {str(e)}")

# Entry point
if __name__ == "__main__":
    main()