Spaces:
Sleeping
Sleeping
# Import the libraries | |
import gradio as gr | |
import transformers | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
import os | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# Load the tokenizer and model | |
tokenizer = GPT2Tokenizer.from_pretrained('skylersterling/TopicGPT', use_auth_token=HF_TOKEN) | |
model = GPT2LMHeadModel.from_pretrained('skylersterling/TopicGPT', use_auth_token=HF_TOKEN) | |
model.eval() | |
# Define the function that generates text from a prompt | |
def generate_text(prompt): | |
input_ids = tokenizer.encode(prompt, return_tensors='pt') | |
output = model.generate(input_ids, max_new_tokens=80, do_sample=True) | |
text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return text | |
# Create a gradio interface with a text input and a text output | |
interface = gr.Interface(fn=generate_text, inputs='text', outputs='text') | |
interface.launch() |