# Import the libraries import gradio as gr import transformers from transformers import GPT2Tokenizer, GPT2LMHeadModel import os HF_TOKEN = os.environ.get("HF_TOKEN") # Load the tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained('skylersterling/TopicGPT', use_auth_token=HF_TOKEN) model = GPT2LMHeadModel.from_pretrained('skylersterling/TopicGPT', use_auth_token=HF_TOKEN) model.eval() # Define the function that generates text from a prompt def generate_text(prompt): input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate(input_ids, max_new_tokens=80, do_sample=True) text = tokenizer.decode(output[0], skip_special_tokens=True) return text # Create a gradio interface with a text input and a text output interface = gr.Interface(fn=generate_text, inputs='text', outputs='text') interface.launch()