|
"""Web application for the Agent Supervisor with GAIA benchmark integration. |
|
|
|
This module provides a Gradio web interface for interacting with the Agent Supervisor |
|
and evaluating it against the GAIA benchmark. |
|
""" |
|
|
|
import os |
|
import json |
|
import uuid |
|
import asyncio |
|
import requests |
|
import pandas as pd |
|
import gradio as gr |
|
|
|
from typing import Dict, List, Optional |
|
from langchain_core.messages import HumanMessage |
|
from langgraph.checkpoint.memory import MemorySaver |
|
|
|
from react_agent.graph import create_agent_supervisor_graph, get_compiled_graph |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
class GaiaAgent: |
|
"""Agent implementation for the GAIA benchmark using the LangGraph supervisor.""" |
|
|
|
def __init__(self, model_name=None, checkpointer=None): |
|
"""Initialize the GAIA agent with LangGraph architecture. |
|
|
|
Args: |
|
model_name: Optional model name to override the default |
|
checkpointer: Optional checkpointer for persistence |
|
""" |
|
print("Initializing GaiaAgent...") |
|
|
|
|
|
from react_agent.configuration import Configuration |
|
|
|
|
|
config = Configuration.from_context() |
|
default_model = config.model |
|
|
|
|
|
if checkpointer is None: |
|
from langgraph.checkpoint.memory import MemorySaver |
|
checkpointer = MemorySaver() |
|
print("Using in-memory checkpointer to avoid thread safety issues") |
|
|
|
|
|
self.graph = get_compiled_graph(checkpointer=checkpointer) |
|
|
|
|
|
self.config = { |
|
"configurable": { |
|
|
|
"model": model_name if model_name else default_model, |
|
|
|
"researcher_model": config.researcher_model, |
|
"coder_model": config.coder_model, |
|
"planner_model": config.planner_model, |
|
"supervisor_model": config.supervisor_model, |
|
"critic_model": config.critic_model, |
|
"final_answer_model": config.final_answer_model, |
|
|
|
"max_search_results": config.max_search_results, |
|
"recursion_limit": config.recursion_limit, |
|
"max_iterations": config.max_iterations, |
|
"allow_agent_to_extract_answers": config.allow_agent_to_extract_answers |
|
} |
|
} |
|
|
|
print(f"GaiaAgent initialized successfully with model: {self.config['configurable']['model']}") |
|
|
|
def __call__(self, question: str) -> str: |
|
"""Process a question and return an answer formatted for GAIA benchmark. |
|
|
|
Args: |
|
question: The GAIA benchmark question |
|
|
|
Returns: |
|
Answer formatted for GAIA benchmark evaluation |
|
""" |
|
print(f"Agent received question: {question[:100]}...") |
|
|
|
|
|
thread_id = str(uuid.uuid4()) |
|
self.config["configurable"]["thread_id"] = thread_id |
|
|
|
|
|
from react_agent.configuration import Configuration |
|
config = Configuration.from_context() |
|
|
|
|
|
system_prompt = """You are a general AI assistant. Answer the question concisely. |
|
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. |
|
If asked for a number, don't use commas or units like $ or % unless specified. |
|
If asked for a string, don't use articles or abbreviations (e.g. for cities), and write digits as plain text unless specified otherwise. |
|
Focus on brevity and correctness.""" |
|
|
|
|
|
input_state = { |
|
"messages": [HumanMessage(content=question)], |
|
"configurable": { |
|
"thread_id": thread_id, |
|
"system_prompt": system_prompt, |
|
"model": config.model |
|
} |
|
} |
|
|
|
|
|
try: |
|
|
|
|
|
try: |
|
final_state = self.graph.invoke(input_state, config=self.config) |
|
except Exception as e: |
|
|
|
print(f"Initial invocation failed: {str(e)}") |
|
|
|
self.config["configurable"]["recursion_limit"] = config.recursion_limit * 2 |
|
final_state = self.graph.invoke(input_state, config=self.config) |
|
|
|
|
|
if "gaia_answer" in final_state: |
|
answer = final_state["gaia_answer"] |
|
else: |
|
messages = final_state.get("messages", []) |
|
answer = messages[-1].content if messages else "No answer generated." |
|
|
|
|
|
if "FINAL ANSWER:" in answer: |
|
answer = answer.split("FINAL ANSWER:")[1].strip() |
|
|
|
print(f"Agent returning answer: {answer[:100]}...") |
|
return answer |
|
|
|
except Exception as e: |
|
error_msg = f"Error processing question: {str(e)}" |
|
print(error_msg) |
|
return error_msg |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
"""Fetches all questions, runs the GaiaAgent on them, submits answers, and displays the results.""" |
|
|
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = GaiaAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
answer = agent(question_text) |
|
|
|
answers_payload.append({ |
|
"task_id": task_id, |
|
"submitted_answer": answer |
|
}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Answer": answer |
|
}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Answer": f"AGENT ERROR: {e}" |
|
}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
def test_random_question(): |
|
"""Fetch a random question from the API and run the agent on it.""" |
|
api_url = DEFAULT_API_URL |
|
random_question_url = f"{api_url}/random-question" |
|
|
|
try: |
|
|
|
response = requests.get(random_question_url, timeout=15) |
|
response.raise_for_status() |
|
question_data = response.json() |
|
|
|
if not question_data: |
|
return "Error: Received empty response from random question endpoint.", None |
|
|
|
task_id = question_data.get("task_id") |
|
question_text = question_data.get("question") |
|
|
|
if not task_id or not question_text: |
|
return "Error: Invalid question format received.", None |
|
|
|
|
|
agent = GaiaAgent() |
|
answer = agent(question_text) |
|
|
|
|
|
result = { |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Answer": answer |
|
} |
|
|
|
return "Test completed successfully.", result |
|
|
|
except Exception as e: |
|
return f"Error testing random question: {str(e)}", None |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# GAIA Benchmark Agent Evaluation") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, submit answers, and see the score. |
|
3. Alternatively, click 'Test on Random Question' to test the agent on a single random question. |
|
|
|
--- |
|
**Note:** Running the agent on all questions may take some time. Please be patient while the agent processes all the questions. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("Full Evaluation"): |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
with gr.TabItem("Test Single Question"): |
|
test_button = gr.Button("Test on Random Question") |
|
test_status = gr.Textbox(label="Test Status", lines=2, interactive=False) |
|
test_result = gr.JSON(label="Question and Answer") |
|
|
|
test_button.click( |
|
fn=test_random_question, |
|
outputs=[test_status, test_result] |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for GAIA Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |
|
|